Охота на электроовец. Большая книга искусственного интеллекта
Шрифт:
Ещё одно важное заклинание из арсенала специалистов по автоматизированной обработке звука — кепстр [cepstrum]. Эта анаграмма слова spectrum используется для обозначения функции обратного преобразования Фурье от логарифма спектра мощности сигнала. Мне кажется, что это определение способно, будучи произнесено вслух, отнять минимум 150 хит-поинтов у тревожного студента-гуманитария. На самом деле не всё так страшно. Давайте посмотрим для начала на некоторые особенности спектрограммы мощности для человеческого голоса. Звуковые волны, возникающие в голосовых связках при прохождении через них выдыхаемого воздуха, отражаясь от стенок полостей тела, создают в них несколько резонансов в области разных частот. Если вы посмотрите на спектрограмму человеческого голоса, то увидите на ней характерные параллельные полосы, примерно по одной на каждые 1000 Гц. Их называют формантами. На иллюстрации ниже представлена спектрограмма русского гласного [е], на которой можно различить пять формант.
Форманта — это концентрация акустической
1898
Wood S. (2005). What are formants? / Beginners guide to Praat //Se/SidneyWood/praate/whatform.html
1899
Володин И. А., Володина Е. В. (2006). Скромное очарование нелинейностей. О скулении собак, голосе Высоцкого, алтайском пении, и не только / Природа. №2, 2006 // http://vivovoco.astronet.ru/VV/JOURNAL/NATURE/02_06/VOICE.HTM
Любые полости, стенки которых могут отражать звуковые колебания, способны формировать так называемые акустические резонансы. С этой точки зрения между декой гитары, ванной комнатой или одной из полостей речевого тракта человека нет существенной разницы. Звуковые волны, оказавшись в замкнутом пространстве, отражаются от стенок полости, а затем отражённые волны накладываются на исходные. Если исходные и отражённые волны совпадают по фазе, амплитуда итогового звукового колебания усиливается. Это явление называется акустическим резонансом. Акустический резонанс возникает в том случае, если расстояние между параллельными отражающими стенками полости кратно значению половины длины звуковой волны. Явление противоположное резонансу, когда отражённая волна находится в противофазе с исходной, называется антирезонансом. При антирезонансе отражённая волна гасит исходную, снижая амплитуду итоговой волны. Таким образом, если поместить внутри полости источник звука, генерирующий звуковые колебания различных частот, некоторые из этих колебаний будут усилены, а некоторые — ослаблены.
Речевой тракт человека состоит из нескольких соединённых полостей, причём их объём и форма в процессе произнесения звуков могут изменяться. Например, при помощи языка человек меняет объём и форму ротовой полости, а при помощи смыкания мягкого нёба изолирует от речевого тракта носовую полость. Такая сложная конфигурация речевого тракта и приводит к возникновению сразу нескольких областей усиления частот, каковыми и являются форманты.
Речевой тракт фильтрует исходный звук, представляющий собой периодические вибрации голосовых связок или апериодическое шипение, и результатом фильтрации является звук, попадающий во внешнюю среду.
Форманты встречаются и видны на спектрограммах вокруг частот, которые соответствуют резонансам речевого тракта. Но есть разница между чистыми гласными, с одной стороны, и согласными и носовыми гласными, с другой. Для согласных также характерны антирезонансы на одной или нескольких частотах из-за пероральных сужений. Антирезонансы ослабляют или устраняют те или иные форманты, так что они выглядят ослабленными или вообще отсутствуют на спектрограмме.
При произнесении носовых звуков (например, [м] и [н] в русском языке) люди используют не два, а три резонатора (к полости рта и глотки добавляется ещё и полость носа). Открытый проход в носовую полость создаёт очень большой резонатор (глотка + нос) и, соответственно, сильный резонанс. Кроме того, интерференция между полостями создаёт дополнительные антирезонансы.
Благодаря формантам отдельно взятый столбец спектрограммы содержит периодические подъёмы и спады, причём пики этих колебаний приходятся на центральные частоты формант. Таким образом, спектрограмме присуща некоторая избыточность, носящая, так же как и в оригинальном сигнале, периодический характер.
В 1963 г. три исследователя — Брюс Богерт, Майкл Хили и уже упоминавшийся нами Джон Тьюки — написали статью [1900] , [1901] под игривым названием «Сачтотный аланиз временных рядов для эхо: кепстр, псевдоавтоковариация, кросс-кепстр и взлом зафы» (The Quefrency Alanysis of Time Series for Echoes: Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum, and Saphe Cracking), посвящённую анализу периодических компонент спектрограмм, появляющихся вдоль частотной оси из-за отражений звука. Эта работа, посвящённая анализу колебаний в геофизике, дала начало широкому применению кепстрального преобразования при обработке сигналов, позволяющего уменьшить число параметров [1902] , [1903] .
1900
Bogert B. P., Healy J. R., Tukey J. W. (1963). The Quefrency Analysis of Time Series for Echoes: Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum, and Saphe Cracking / Proceedings of the Symposium on Time Series Analysis, 1963, pp. 209-243.
1901
Howarth R. J. (2017). Dictionary of Mathematical Geosciences: With Historical Notes. Springer // https://books.google.ru/books?id=MNwlDwAAQBAJ
1902
Oppenheim A. V., Schafer R. W. (2004). Dsp history — From frequency to quefrency: a history of the cepstrum / IEEE Signal Processing Magazine, Vol. 21(5), pp. 95—106 // https://doi.org/10.1109/msp.2004.1328092
1903
Waslo B. (1994). Reflecting on Echoes and the Cepstrum: A look at Quefrency Alanysis and Hearing / Speaker Builder, August 1994 // http://www.libinst.com/cepst.htm
Кепстральное
В полученной таким путём «кепстрограмме» место частоты занимает «сачтота» [quefrency], фаза [phase] становится «зафой» [saphe] и так далее. Дошло даже до изобретения «лифтрации» [liftering, вместо filtering]. Коэффициенты гармоник кепстрального разложения для мел-спектрограммы называют мел-кепстральными коэффициентами (Mel-frequency cepstral coefficients, MFCCs).
Чтобы окончательно всех запутать, в 1978 г. геофизики Мануэль Сильвиа и Эндерс Робинсон вводят [1904] , [1905] термин kepstrum, причём в данном случае KEPSTR является аббревиатурой — Kolmogorov Equation Power Series Time Response [временной ответ степенных рядов уравнения Колмогорова]. Сильвиа и Робинсон показывают развитие идей «кепстрального анализа» начиная с работ Пуассона, Карла Шварца, Сегё, Колмогорова, Богерта и так далее, а затем отмечают, что одной из проблем кепстра у Богерта является потеря в нём информации о фазе колебаний. В общем, кепстр [kepstrum] у Сильвии и Робинсона и кепстр [cepstrum] у Богерта и его коллег — это два несколько разных кепстра, но в обработке звука обычно применяется второй, название которого не имеет никакого отношения к Андрею Николаевичу Колмогорову.
1904
Silvia M. T., Robinson E. A. (1978). Use of the kepstrum in signal analysis / Geoexploration, Vol. 16 (1—2), pp. 55—73 //90007-8
1905
Silvia M. T., Robinson E. A. (1979). Deconvolution of Geophysical Time Series in the Exploration for Oil and Natural Gas. Elsevier // https://books.google.ru/books?id=Ecgfjh-MpU0C
В общем, в начале тысячелетия у разработчиков систем распознавания речи существовало немало способов представления звуковой информации на входе в распознающую систему, позволяющих уменьшить число параметров и тем самым упростить представление звука.
Конечно, решая задачу распознавания речи, можно «скармливать» звуковые данные на вход модели в виде последовательности амплитуд звукового сигнала. Но при таком способе размерность данных становится непотребной: даже при частоте дискретизации в 8 кГц всего одна секунда звуковой информации — это 8000 чисел, а для пятисекундной фразы (в Русской языковой базе данных (Russian Speech Database) средняя длина фразы составляет около 5 секунд [1906] ) мы получим уже 40 000 значений. Что уж говорить про 16 кГц (частота дискретизации в современных системах интернет-телефонии) или про 44 100 Гц (частота дискретизации при записи звука на Audio CD). При частоте дискретизации 16 кГц, звуке моно и глубине кодирования в 16 бит (при такой глубине кодирования будет различаться 216 = 65 536 уровней сигнала) объём данных для пятисекундной фразы будет примерно такой же, как у средней картинки из ImageNet, но, что хуже, на выходе модели мы должны получить не просто метку класса, а последовательность из десятков символов естественного языка. Если взять алфавит из 27 символов (26 латинских букв и пробел), то при помощи такого алфавита можно составить 27100 ? 1,37 x 10143 сообщений длиной 100 символов. Конечно, по большей мере это будет полная белиберда. Давайте попробуем оттолкнуться от слов, существующих в языке. В английском языке, по разным оценкам, от 470 000 до миллиона с небольшим слов [1907] , [1908] , причём активно используется около 170 000 из них [1909] . В среднем на одну лексему (под лексемой понимается совокупность всех форм некоторого слова) английского языка приходится примерно 4,1 словоформы [1910] (слова могут изменяться, например, за счёт добавления окончаний), что даёт нам около 700 000 активных словоформ. При длине предложения в 14 слов (средней для английского языка [1911] ) мы получим 700 00014 ? 6,78 x 1081 различных предложений, что уже лучше, но всё же бесконечно далеко от практического применения.
1906
Resource: Russian Speech Database (2014) / International standard language resource number // http://www.islrn.org/resources/428-147-317-182-1/
1907
Wil (2014). How many words are in the English language? / EF English Live // https://englishlive.ef.com/blog/language-lab/many-words-english-language/
1908
How many words are there in English? / Merriam-Webster.com Dictionary, Merriam-Webster // https://www.merriam-webster.com/help/faq-how-many-english-words
1909
Wil (2014). How many words are in the English language? / EF English Live // https://englishlive.ef.com/blog/language-lab/many-words-english-language/
1910
Wu S., Cotterell R., O’Donnell T. J. (2019). Morphological Irregularity Correlates with Frequency // https://arxiv.org/abs/1906.11483v1
1911
Vincent S. (2014). Sentence length: why 25 words is our limit / Inside GOV.UK // https://insidegovuk.blog.gov.uk/2014/08/04/sentence-length-why-25-words-is-our-limit/