Охота на электроовец. Большая книга искусственного интеллекта
Шрифт:
Поэтому в качестве альтернативы команда исследователей из Facebook предложила иной подход, получивший название «псевдоразметка». Его суть заключается в том, что модель сначала обучается на размеченных данных, а затем используется для разметки неразмеченной части данных, которые после этого пополняют обучающую выборку.
Стоп-стоп-стоп, а почему это вообще работает?.. Ведь, казалось бы, модель ориентируется на свои собственные результаты? Как это может улучшить точность распознавания? В глубоком обучении нередко прибегают к использованию пар моделей «учитель» — «ученик», в которых более простая и быстрая модель-ученик может использовать разметку, выполненную более большой и медленной, но точной моделью-учителем. Но разве может модель выступать в роли учителя для самой себя?
На самом деле этот трюк работает благодаря двум вещам. Во-первых, ввиду аугментации — при псевдоразметке модель выполняется на неискажённых аугментацией данных. После завершения псевдоразметки эти данные попадают на этап обучения модели уже в аугментированном виде, то есть с некоторыми искажениями спектрограммы, при этом они снабжены
1939
Xu Q., Baevski A., Likhomanenko T., Tomasello P., Conneau A., Collobert R., Synnaeve G., Auli M. (2020). Self-training and Pre-training are Complementary for Speech Recognition // https://arxiv.org/abs/2010.11430
В 2021 г. модель W2v-BERT, основанная, как можно догадаться из названия, на комбинации wav2vec и BERT, поставила новый рекорд в точности распознавания речи из набора LibriSpeech: 2,5% для «грязной» и 1,4% WER для «чистой» частей датасета. Скорее всего, этот результат будет ещё немного улучшен в ближайшие годы, хотя, по всей видимости, LibriSpeech ждёт судьба ImageNet — задача распознавания на его основе стала слишком простой для современных моделей, именно поэтому в сообществе специалистов по распознаванию речи активно обсуждается возможность использования альтернативных наборов тестовых данных [1940] .
1940
Chung Y.-A., Zhang Y., Han W., Chiu C.-C., Qin J., Pang R., Wu Y. (2021). W2v-BERT: Combining Contrastive Learning and Masked Language Modeling for Self-Supervised Speech Pre-Training // https://arxiv.org/abs/2108.06209
В 2022 г. исследователи из компании OpenAI представили на суд общественности модель для распознавания речи под названием Whisper. Для её обучения использовалось целых 680 000 часов аудиозаписей, снабжённых субтитрами, причём записи содержали речь сразу на 97 языках (впрочем, основная часть всё-таки пришлась на английский). При сборе записей исследователи постарались отсеять те из них, субтитры у которых были сгенерированы автоматически при помощи различных систем распознавания речи, чтобы избежать попадания в обучающую выборку ошибок, допущенных этими системами. Хотя Whisper и не демонстрирует «из коробки» рекордного значения WER для популярных публичных наборов данных, его результаты выглядят весьма достойно (например, на «чистой» части LibriSpeech WER составляет 2,7%). Одним из основных преимуществ Whisper является его устойчивость к смене домена (ведь на этапе обучения он видел очень разнообразные записи) и возможность недорогой адаптации к целевой задаче путём непродолжительного дообучения на соответствующих данных [1941] .
1941
Radford A., Kim J. W., Xu T., Brockman G., McLeavey C., Sutskever I. (2022). Robust Speech Recognition via Large-Scale Weak Supervision // https://arxiv.org/abs/2212.04356
В ноябре 2022 г. Google объявила об «Инициативе 1000 языков» — амбициозной программе, которая призвана помочь вовлечению в международное общение миллиардов людей, принадлежащих к множеству разобщённых языковых сообществ. В рамках этой инициативы Google обучила модель USM (Universal Speech Model, Универсальная языковая модель), способную распознавать речь более чем на 100 языках мира и осваивать новые языки, отталкиваясь от совсем небольшого количества примеров. Этот результат был получен за счёт предобучения кодировщика модели на большом неразмеченном многоязычном наборе аудиозаписей продолжительностью 12 млн часов, охватывающем более 300 языков, с последующим дообучением на меньшем наборе записей, снабжённых текстовой транскрипцией [1942] , [1943] .
1942
Dean J. (2022). 3 ways AI is scaling helpful technologies worldwide / Google blog, Nov 02, 2022 // https://blog.google/technology/ai/ways-ai-is-scaling-helpful/
1943
Zhang Y., Han W., Qin J., Wang Y., Bapna A., Chen Z., Chen N., Li B., Axelrod V., Wang G., Meng Z., Hu K., Rosenberg A., Prabhavalkar R., Park D. S., Haghani P., Riesa J., Perng G., Soltau H., Strohman T., Ramabhadran B., Sainath T., Moreno P., Chiu C., Schalkwyk J., Beaufays F., Wu Y. (2022). Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages // https://arxiv.org/abs/2303.01037
В
Помимо собственно распознавания речи, системы, основанные на технологиях машинного обучения, применяются сегодня для идентификации пользователей по голосу, выделения в аудиозаписях реплик различных людей (так называемая диаризация), активации устройств по ключевым словам, определения интонационной окраски речи, улучшения качества звука и многих других задач в области обработки голосовой информации. При этом прогресс во всех этих областях продолжается, а это означает, что все вышеперечисленные способности или уже стали обыденными для современных продуктов и сервисов, или станут таковыми в ближайшие годы.
6.2.3 Распознавание образов в играх
Онода Шестой дан, арбитр в прощальной партии Мэйдзина Хонинбо, несколько лет спустя, незадолго до своей смерти, вдруг разгромил всех противников на большом квалификационном турнире Отэай, устраиваемом Ассоциацией го. Его игра была блестящей, а я бы даже сказал — пугающе великолепной. И за доской он держался не так, как обычно: при ходе противника тихо сидел с закрытыми глазами. Потом он объяснял, что в это время старался побороть в себе жажду победы. После турнира он почти сразу лёг в больницу, где вскоре скончался от рака желудка, о котором и сам не подозревал. Точно так же Кубомацу Шестой дан, у которого одно время учился Отакэ. Незадолго до смерти он показал выдающиеся результаты в турнире Отэай.
6.2.3.1 Победа в го
Как мы писали ранее, в главе 3.7, игра го на протяжении многих лет исполняла роль своеобразного философского камня в области искусственного интеллекта и успехи в ней компьютерных программ несколько лет назад были весьма невелики.
Возможно, уважаемый читатель, вас удивит такая смена темы повествования — с распознавания изображений и звука на игру в го.
Но дело в том, что позиция в го ничем принципиально не отличается от изображения размером 19 x 19 пикселей, а различные её варианты, возникающие в процессе игры, — прямые аналоги зрительных образов. Как выяснилось, нейросетевая модель, хорошо зарекомендовавшая себя в задачах распознавания зрительных образов, может использоваться и в нахождении важных позиционных структур на игровой доске в го.
И не только в го…
Но обо всём по порядку.
27 января 2016 г. в журнале Nature вышла статья [1944] коллектива исследователей из компании DeepMind (была приобретена Alphabet — родительским холдингом Google в 2014 г., поэтому иногда называется Google DeepMind) под названием «Овладение игрой го при помощи глубоких нейронных сетей и дерева поиска» (Mastering the game of Go with deep neural networks and tree search). Эта статья произвела в сообществе игроков в го эффект разорвавшейся бомбы. Дело в том, что, помимо описания алгоритмов, лежащих в основе новой программы для игры в го, получившей название AlphaGo, в статье приводились результаты матча AlphaGo против чемпиона Европы по го — Фань Хуэя. Фань Хуэй, профессионал второго дана, не просто потерпел в этом матче поражение, а проиграл его всухую, со счётом 0 : 5. Сам матч прошёл в штаб-квартире DeepMind в Лондоне в октябре 2015 г. при «длинном» временном контроле (час для каждого игрока, потом 30 секунд на ход без накопления, с тремя дополнительными полуминутами на всю игру). Это стало первым случаем в истории, когда компьютерная программа для игры в го победила профессионального игрока-человека на полноразмерной доске без форы.
1944
Silver D., Huang A., Maddison C. J., Guez A., Sifre L., van den Driessche G., Schrittwieser J., Antonoglou I., Panneershelvam V., Lanctot M., Dieleman S., Grewe D., Nham J., Kalchbrenner N., Sutskever I., Lillicrap T., Leach M., Kavukcuoglu K., Graepel T., Hassabis D. (2016). Mastering the game of Go with deep neural networks and tree search / Nature, Vol. 529(7587), pp. 484—489 // https://doi.org/10.1038/nature16961