Чтение онлайн

на главную - закладки

Жанры

Определитель минералов
Шрифт:

Показательно, что у многих минералов проявляется несколько аналогичных или разнородных элементов симметрии. Строгий вывод, который здесь опущен, доказывает, что всего существует 32 класса симметрии, отличающихся либо отдельными элементами симметрии, либо их допустимыми закономерными сочетаниями. Каждый минерал и каждый кристалл относятся лишь к одному из 32 классов симметрии.

Таблица 2

Рис. 5.

Нижеследующее

сопоставление иллюстрирует три ныне еще употребительные системы обозначений (символов) классов симметрии.

Пример: С 4h — 4/m — тетраго–нально–бипирамидальный. C4h — это символ по Шенфлису, 4/m — по Герману — Могену. Последнее обозначение исходит из обобщенной кристаллографической формы и ведет свое начало от Грота. Система обозначений по Герману — Могену (интернациональная символика) получает все более широкое распространение. 32 класса симметрии распределяются по шести кристаллографическим сингониям, которые вследствие своей малочисленности и более легкой распознаваемости являются, конечно, более наглядными. А сами сингонии выводятся из общих законов симметрии.

Что понимают под сингонией? Она выводится из мысленно помещенной внутри кристалла системы координатных кристаллографических осей, причем соотношение длин отрезков по осям и величина углов между ними строго определенные для каждой сингонии. Установка системы кристаллографических осей всегда производится таким образом, что к наблюдателю обращена ось а, направо располагается ось b, а вверх направлена ось с. Между осями а и b заключен угол у, между осями а и с — угол |3, а между осями b и с — угол а (рис. 5).

Каждая сингония охватывает несколько классов симметрии (см. сопоставление в табл.2). Сравнительный обзор показывает, что каждый класс легко подчинить соответствующей сингонии, поскольку каждая сингония характеризуется определенным набором элементов симметрии. В триклинной сингонии может присутствовать в качестве элемента симметрии только 1 — ось идентичности (вращение на 360°) или 1 как нульмерный элемент симметрии. В моноклинной сингонии существует три класса симметрии, характеризующиеся наличием двойной оси симметрии, плоскости симметрии или комбинацией обоих элементов. При сочетании трех двойных осей или плоскостей симметрии возникает ромбическая сингония. Четверная ось симметрии характеризует тетрагональную, шестерная — гексагональную и тройная — тригональную сингонию. Последняя рассматривается как подсистема гексагональной. Кубическая сингония определяется присутствием тройных осей симметрии, которые, однако, в отличие от тригональной сингонии во всех классах кубической сингонии в обозначениях ставятся на второе место.

Примеры: 432 — кубическая, 422 — тетрагональная, или 23 — кубическая, 32 — тригональная.

Следует, однако, показать яснее, что кристаллографические сингонии определяются непосредственно симметрией кристаллов. Наличие тетрагональной оси симметрии предопределяет условие а=b, угол между этими осями равен 90°. Ведь если вращение на 90° должно привести к идентичной картине, необходимо, чтобы отрезки по обеим осям были одинаковы. Аналогичные соотношения имеют место в гексагональной сингонии. В кубической сингонии соответственно три двойные или четверные оси симметрии связаны с четырьмя тройными осями, располагающимися вдоль пространственных диагоналей куба; обе системы осей пересекаются под характеристическим углом 54°44'.

Следует

поставить важный вопрос, обсуждение которого еще более прояснит соотношения между сингонией, классом симметрии и элементом симметрии. Расположены ли элементы симметрии в кристалле произвольно или и здесь выявляются закономерные соответствия? Оказывается, что элементы симметрии тесно связаны с кристаллографическими осями. Для отдельных сингонии установлены следующие главные направления (параллельные лучу зрения):

Сингония Главные направления
Триклинная Отсутствуют
Моноклинная Ось b
Ромбическая Ось а, ось b, ось с
Тетрагональная Гексагональная (Тригональная) Ось с, оси а, биссектриса угла между осями а
Кубическая Оси а, пространственные диагонали куба, диагонали граней куба

Главными направлениями в кристалле называются направления, в которых располагаются элементы симметрии. Отсюда следует, что элементы симметрии могут находиться только в строго определенных направлениях.

В триклинной сингонии главное направление не установлено, поскольку придавать направление оси идентичности 1 или 1, т. е. точке, было бы бессмысленно. В моноклинной сингонии достаточно одного направления и для класса 2/m, поскольку эта комбинация оси и плоскости располагается в кристалле таким образом, что нормаль (перпендикуляр) к двойной оси ориентирована параллельно плоскости симметрии. Для других сингонии необходимо указывать три главных направления, хотя в кристаллах этих сингонии может присутствовать большое количество направлений, но два или даже три из них являются равноценными (например, в тетрагональной сингонии а=b или в кубической а = b = с), так что указание одного из таких направлений включает в себя и остальные, ему адекватные.

Поскольку каждый класс симметрии подчиняется какой–либо одной сингонии, с помощью главных направлений определяется положение элементов симметрии в пространстве. Само собой разумеется, что существует и обратная связь, в соответствии с которой кристаллографическим осям отвечают определенные элементы симметрии. Примеры:

Класс симметрии Сингония Положение элементов симметрии
2/m Моноклинная 2||b m_|_b
2/m 2/m 2/m Ромбическая 2||а 2||b 2||с
4/m 2/m 2/m Тетрагональная т _|_a m_|_ b m_|_ с 4 || с 2 || а, b 2 || биссектрисам углов между осями а m_|_c т_|_a, b m_|_ биссектрисам углов между осями а
6 Гексагональная 6||с
432 Кубическая 4||а, b, с 3 || четырем пространственным диагоналям куба 2 || шести диагоналям граней куба

|| —параллельно

_|_ — перпендикулярно

Пример класса 6 показывает, что не в каждом классе симметрии все главные направления соответствующей сиигонии сопровождаются элементами симметрии.

Внешнюю огранку кристаллов составляют грани, ребра и углы, которые связаны между собой соотношением Эйлера: число граней+число углов=число ребер +2.

Подобно элементам симметрии следует привести также грани и ребра кристаллов в соответствие с кристаллографическими осями и тем самым с элементами симметрии.

Поделиться:
Популярные книги

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Часовая башня

Щерба Наталья Васильевна
3. Часодеи
Фантастика:
фэнтези
9.43
рейтинг книги
Часовая башня

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Затерянные земли или Великий Поход

Михайлов Дем Алексеевич
8. Господство клана Неспящих
Фантастика:
фэнтези
рпг
7.89
рейтинг книги
Затерянные земли или Великий Поход

(Не)зачёт, Дарья Сергеевна!

Рам Янка
8. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
(Не)зачёт, Дарья Сергеевна!

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Русь. Строительство империи 2

Гросов Виктор
2. Вежа. Русь
Фантастика:
попаданцы
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи 2