Ошибки мировой космонавтики
Шрифт:
Возможно, проблему можно было решить, если бы удалось быстро ее обнаружить – всегда есть возможность при помощи радиосигнала отправить на околоземную орбиту прямую команду. Сложность заключалась в том, что описанные выше трудности «Блока Д» имели место в области, которую с советских земных пунктов слежения попросту не было видно. Обычно для лучшего контроля запуска в Тихий океан выводились специальные корабли измерительного комплекса. Они брали на себя слежение и контроль запуска в те моменты, когда наземные комплексы на территории СССР не могли напрямую видеть ракету или космический аппарат. Из-за тяжелой экономической обстановки в 90-е годы не было возможности вывести такие суда в океан для контроля запуска «Марса-96». Сложное положение страны сказалось на этой миссии еще на этапе создания, по сути, все делалось на чистом энтузиазме, и в итоге, по словам академика М. Я. Марова, «моральный ущерб от аварии был не меньше финансовых потерь».
Вернемся к марсианской программе США. С середины 70-х идет активный процесс развития информационных технологий. В том числе это касается бортовых компьютеров космических станций и их программного обеспечения. Поскольку Марс далеко, а порой еще и Солнце оказывается между нашей и Красной планетами
Запущенный к Марсу в 1997 году космический аппарат Pathfinder столкнулся с неожиданной проблемой. В бортовой компьютер аппарата были заранее внесены последовательности команд для решения различных задач. Проблема заключалась в том, что для этих заданий не был четко прописан приоритет их выполнения. В итоге, уже оказавшись на Марсе, космический аппарат не знает, чем ему заняться в первую очередь, и начинает прокрастинировать – совсем как человек. Прокрастинация встречается не только среди людей, но характерна и для животного мира. Если перед живым существом стоит несколько одинаково важных задач, оно невольно стремится отвлечься от них всех и заняться чем-то совершенно посторонним. Конечно, Pathfinder свободой воли не обладал и мог делать только то, что было предписано программой, точнее, несколькими программами, предназначенными для решения разных задач. Получилось так, что аппарату приходилось тратить вычислительные мощности на решение, чем же сейчас заняться, а уже после принятия такого решения и некоторого времени работы по конкретной задаче он «передумывал» и переходил к выполнению другой программы, временно забросив предыдущую. Впоследствии в программный код марсианских аппаратов стали закладывать более четкие и структурированные алгоритмы выполнения работ с различными целями.
Космический аппарат, запущенный в 1998 году США в рамках программы Mars Surveyor Program, состоял из посадочного Mars Polar Lander (MPL), предназначенного для посадки в приполярной области Красной планеты, и орбитального Mars Climate Orbiter (МСО) для изучения марсианской погоды. Эта миссия провалилась полностью.
Mars Polar Lander успешно вошел в марсианскую атмосферу и перешел в режим радиомолчания. Связь должна была возобновиться после посадки, однако сеанс связи перед входом посадочного аппарата в атмосферу оказался последним. Расследование причин аварии показало, что с большой долей вероятности подвели магнитные датчики. При спуске в атмосфере у Mars Polar Lander должны были раскрыться опоры, на которые и производилась бы посадка. Магнитные датчики обязаны были регистрировать вибрации опор при соприкосновении с поверхностью планеты, после чего двигателям мягкой посадки давалась команда на отключение. Только датчики оказались излишне чувствительными и восприняли тряску в процессе спуска и открытия опор как вибрацию от касания поверхности. Точнее, программный код аппарата посчитал, что сигналы от датчиков достаточно продолжительные, что могло означать касание поверхности, в то время как реакция на вибрацию от открытия опор должна была регистрироваться по-другому. Двигатели выключились раньше времени, и посадочный аппарат разбился.
Mars Climate Orbiter был утерян по еще более обидной причине. Особенно досадно, что это не единичный такой случай, и подобную историю вы можете найти в главе «Логика работы и автоматика». Проблема заключалась в несоответствии двух различных систем единиц. В то время как весь остальной цивилизованный мир уже использовал метрическую систему (СИ), в США все еще пользовались собственной системой мер, уходящей корнями в Британскую империю. Один из основных программных файлов для расчета траектории как раз пользовался имперской системой. Выходные данные этой подпрограммы отправлялись в другую, которая, согласно технической документации, должна была пользоваться единицами СИ. Вторая подпрограмма автоматически считала, что полученные ею данные представлены в метрической системе, а на деле это было не так. Отдельные проблемы доставили солнечные батареи аппарата. Они располагались асимметрично относительно «тела» MCO, из-за чего в течение девятимесячного путешествия к Марсу аппарат дополнительно разворачивало. Давление света на большую по площади часть солнечных панелей придавало аппарату добавочный угловой момент, который приходилось компенсировать. Инженеры знали о вероятности этого, но не предполагали, насколько часто MCO будет разворачиваться на такой угол, который придется корректировать двигателями. Подобные события происходили в десять раз чаще, чем предполагалось. Опять же, данные об угловом моменте выдавались с использованием имперской системы единиц, а ПО, работавшее с ними далее, считало их метрическими. Это потихоньку накапливало ошибку в траектории. В итоге МСО оказался на 170 км ближе к Марсу, чем предполагала программа полета, и в какой-то момент перестал выходить на связь – он либо распался во время падения в марсианской атмосфере, либо разбился о поверхность планеты.
Лишь в 2007 году NASA от греха подальше окончательно переходит на обязательное использование метрической системы единиц при разработке космических аппаратов и программного обеспечения для них. К слову говоря, к использованию СИ во многих других сферах жизни в США пока так и не пришли.
Тем временем другие страны подключаются к марсианским исследованиям. В 1998 году Япония отправляет к Красной планете свой космический аппарат PLANET-B (позже он получил название Nozomi, что переводится с японского как «надежда»). Аппарат своей цели не достиг. Возможности японских ракет-носителей не позволяли сразу вывести Nozomi на расчетную трассу к Марсу. Было принято решение компенсировать недостаток мощности носителя при помощи нескольких гравитационных маневров. Сначала своей гравитацией должна была помочь Луна. Два пролета естественного спутника Земли 24 сентября и 18 декабря 1998 года прошли успешно. Следующим гравитационным маневром 20 декабря 1998 года, на этот раз возле Земли, предполагалось вывести Nozomi на трассу к Марсу таким образом, чтобы в октябре 1999 года аппарат оказался
Эти маневры прошли успешно, но тоже не без приключений. 21 апреля 2002 года, приближаясь к Земле, космический аппарат попал под мощную солнечную вспышку. Поток заряженных частиц от светила повредил часть аппаратуры на борту. В том числе пострадала система охлаждения и контроля температуры. Гидразин, использовавшийся в качестве горючего для двигателей, в отсутствие корректной работы системы контроля температуры попросту замерз. К счастью, Солнце, создавшее эту проблему, само ее и решило. К декабрю 2002 года Nozomi подошел довольно близко не только к Земле, но и к Солнцу, и достаточное для выполнения гравитационного маневра количество горючего на тот момент уже оттаяло. Ко времени выполнения следующего маневра в июне 2003 года гидразин полностью оттаял. Nozomi наконец-то отправился к Марсу. Затем 9 декабря 2003 года космический аппарат требовалось развернуть, чтобы 14 декабря он мог выйти на околомарсианскую орбиту. Сделать это не удалось, и миссия была признана завершенной. Пролет космического аппарата рядом с Марсом 14 декабря 2003 года вывел его на гелиоцентрическую орбиту с периодом обращения около двух земных лет. Все эти годы Nozomi не только пытался добраться до Красной планеты, но и при помощи исправного и добротно работающего оборудования исследовал межпланетное пространство и получил множество полезных данных. Не получилось у него только исполнить свое изначальное предназначение – изучить Марс.
Европейское космическое агентство тоже отправляло к Красной планете свои аппараты, и у него тоже не все шло гладко. 2 июня 2003 года запускается миссия Mars Express, в рамках которой посадку на поверхность Марса должен был совершить аппарат Beagle-2. Во многом эта миссия повторяет судьбу американского аппарата Mars Observer. Добраться до Красной планеты получилось без проблем, на 19 декабря 2003 года была запланирована посадка. Однако в расчетное время Beagle-2 не вышел на связь. Последующие исследования марсианской атмосферы силами орбитальной части миссии Mars Express показали, что верхние ее слои тоньше, чем предполагали инженеры. Это могло помешать основному парашюту Beagle-2 раскрыться вовремя, так как парашютная система ориентировалась как раз на плотность атмосферы. А могло и не помешать: в 2007 году посадочный аппарат нашелся. Американская станция Mars Reconnaissance Orbiter производила съемку поверхности планеты с околомарсианской орбиты. Высокое разрешение снимков позволило разглядеть в запланированном месте посадки Beagle-2 с не полностью раскрытыми солнечными батареями. Хоть этот аппарат и не выполнил свою научную программу, он хотя бы смог добраться до Марса относительно целым.
Снимки Beagle 2, сделанные Mars Reconnaissance Orbiter. NASA
14 марта 2016 года стартует европейская миссия ExoMars, в состав которой входит посадочный аппарат Schiaparelli. У него проблемы начались 19 октября 2016 года, уже в марсианской атмосфере. На высоте 12 км над поверхностью раскрылся парашют, на высоте 7,8 км – отделился теплозащитный экран, как и было запланировано. Во время спуска инерциальная измерительная система аппарата в течение секунды регистрировала максимально возможное значение входных данных. Эта система измеряет скорость вращения космического аппарата. Одна секунда – слишком большая длительность для максимального сигнала, который она способна измерить. Полученные этой системой данные дальше идут в навигационную систему. Последняя не справилась с обработкой таких данных и решила, что аппарат находится на отрицательной высоте, то есть ниже уровня поверхности Марса. Это повлекло за собой сбрасывание парашюта и включение систем, которые должны были заработать после посадки, хотя на деле до поверхности планеты оставалось 3,7 км. Миссии ExoMars, как и многим другим, пришлось довольствоваться научными данными, которые получал орбитальный аппарат.
5 мая 2018 года США запускает очередной марсианский космический аппарат InSight. Надо сказать, что были запуски американской марсианской исследовательской техники и до этого – возьмем, к примеру, марсоходы Spirit, Curiosity, Opportunity. Подробно на них мы останавливаться не будем, а вот InSight в контексте этой книги представляет интерес. Посадка на Марс благополучно состоялась 26 ноября 2018 года, все работало штатно. InSight впервые в истории устанавливал инструменты на поверхности Марса при помощи роботизированной руки. В частности, был установлен сейсмометр для регистрации марсотрясений и специальный купол для защиты прибора от ветра и перепадов температуры. Через неделю после этих манипуляций началось бурение. И в этом InSight должен был стать первым – раньше автоматические станции изучали только поверхностный слой Марса. Буровая установка, которой был укомплектован InSight, теоретически была способна пробурить грунт на глубину до 5 м. Марс преподнес очередной сюрприз: грунт оказался намного плотнее, чем предполагали ученые и инженеры. В итоге бур застрял на глубине около дюйма (2–3 см). Периодически предпринимались попытки бурить дальше, в этом иногда пыталась помочь роботизированная рука, но успехом дело так и не увенчалось. 9 января 2021 года была предпринята последняя попытка, после чего эта часть миссии официально была завершена, и InSight сосредоточился на других делах.