Основы физиологии высшей нервной деятельности
Шрифт:
Еще более четко явление положительной индукции было выявлено в специальных опытах на примере индукции, развиваемой дифференцировочным торможением. Так, у собаки вырабатывали условный пищевой рефлекс слюноотделения, в котором сигналом служило раздражение касалкой кожи передней лапы. Другая касалка была установлена на задней ноге. Ее применяли без подкреплений, так что скоро она приобрела тормозное значение дифференцировочного раздражителя. На включение дифференцировочной касалки слюноотделения не наступало, однако испробованный сразу после нее положительный раздражитель давал резко усиленный рефлекс (табл. 7).
Измерение силы условного рефлекса
Таблица 7. Положительная индукция из очага дифференцировочного торможения в кожном анализаторе (по Д.С. Фурсикову, 1922)
Однако мозг часто дифференцирует раздражители, связанные с одним и тем же пунктом анализатора, но отличающиеся друг от друга по силе или характеру воздействия. Будет ли в таких случаях проявляться положительная индукция? Ответ на этот вопрос дает следующий опыт. У собаки был выработан условный пищевой рефлекс на сильный свет, от него отдифференцировали слабый свет. Затем сильный свет был испробован сразу после слабого. И здесь условный слюнной рефлекс, вызванный сразу после дифференцировочного, увеличился почти на 50 %. Следовательно, в данном случае положительная индукция произошла из очага торможения в том же пункте анализатора.
Таким образом, положительная индукция может проявляться в различных анализаторах и при разных отношениях тормозного очага и положительно индуцируемого рефлекса.
Отрицательная индукция из очага возбуждения в очаг торможения. Явления отрицательной индукции можно продемонстрировать в следующем опыте. У собаки образован условный пищевой рефлекс на метроном 120 ударов/мин. К этому положительному раздражителю выработана дифференцировка метронома 60 ударов/мин. Как известно, дифференцировку очень легко разрушить, если начать сопровождать дифференцировочный раздражитель подкреплением. И действительно, после того как несколько раз метроном 60 ударов/мин применили с подкармливанием, он сам начал вызывать слюноотделение. Это простой и безотказный способ уничтожения тормозного очага.
Однако при помощи некоторых средств можно задержать разрушение дифференцировки, т.е. продлить существование очагов условного торможения. В частности, таким средством оказалось применение положительных сигналов, т.е. создание очагов условного возбуждения. Это видно из следующих опытов.
Например, собаку подкармливают после каждого применения метронома с частотой 60 ударов/мин до тех пор, пока у нее не начнет сильно выделяться слюна (разрушение дифференцировки). Тогда применяют с подкреплением один раз метроном с частотой 120 ударов/мин. В результате используемый вслед за ним метроном <...часть числа не видна…>0 ударов/мин, который только что вызывал слюноотделение, сразу теряет свое действие. Дифференцировка при этом восстанавливается, что связано с возникновением рядом очага возбуждения. Этот очаг отрицательно индуцировал, т.е. затормозил клетки пункта метронома с частотой 60 ударов/мин, и индукционное торможение усилило остатки дифференцировочного.
Таким
Мозаика возбуждения и торможения в высших отделах нервной системы. Взаимодействие иррадиирующих и индуцированных нервных процессов создает необычно сложное и меняющееся от момента к моменту их уравновешивание и территориальное разграничение. В результате возбуждение и торможение образуют дробный рисунок подвижной мозаики, непрерывно меняющей свои очертания.
В свое время И.П. Павлов говорил о том, какую замечательную картину вспыхивающих и затухающих, непрерывно перемежающихся мерцаний мы увидели бы на поверхности мозга, если бы его возбужденные пункты светились.
Эта мысль Павлова получила осуществление при изучении движения нервных процессов по коре больших полушарий с помощью методики электроэнцефалоскопии (М.Н. Ливанов, В.М. Ананьев, 1960). Электроэнцефалоскоп позволяет наблюдать мозаику электрической активности коры мозга при одновременном отведении из <…часть числа не видна…>00 ее пунктов и воспроизводит на экране телевизионной трубки непрерывно возникающие и меняющиеся подвижные картины, которые фиксируются киносъемкой (рис. 37). Такой «телевизор» мозга значительно расширяет возможности объективного изучения пространственной динамики активности коры при условно-рефлекторной деятельности.
Рис. 37. Перераспределение очагов активности в коре мозга кролика при выработке условного двигательного рефлекса на зрительное раздражение (по М.Н. Ливанову):
кадры киносъемки из опыта с сочетаниями вспышек света и изоритмических электрокожных раздражений лапы, яркость каждой точки на экране топоскопа отражает величину электрической активности этого пункта в данный момент (обратить внимание на постепенную концентрацию активности в районе двигательного и зрительного анализаторов)
Глава 6
СОН И СНОВИДЕНИЯ
Сон — своеобразное состояние организма, когда он замирает в неподвижности. Все животные и человек чередуют бодрствование со сном. Примерно треть своей жизни человек проводит во сне. Суточный ритм смены сна и бодрствования подчинил себе основные функции организма и его изменения связаны с трудной перестройкой их периодичности. Состояния, подобные сну, имеющие приспособительное значение, наблюдаются в жизни животных и могут быть вызваны при особых условиях и у человека, хотя они имеют иную природу.
Периодическая смена деятельности и покоя наблюдается у всех живых существ. Однако под сном принято понимать совершенно определенное явление. Сон как специфическое состояние нервных механизмов характеризуется типичной электрической активностью структур мозга, неподвижностью и угнетением тонической иннервации мускулатуры, торможением дыхания, сердечной деятельности и ряда вегетативных функций. В наиболее четком виде все эти характеристики сна проявляются лишь у высших животных и человека. Очень трудно их оценить в поведении низших животных, особенно беспозвоночных, у которых само понятие сна приобретает иной смысл.