Основы статистической обработки педагогической информации
Шрифт:
При помощи описанного метода строятся графики практически любой сложности. Другими словами, выкристаллизовавшийся в главе шаблон кода охватывает сотни тысяч уникальных графиков.
Перейдем ко второй части, анонсированной в названии раздела. Да, визуализация является важным инструментом понимания, но считается большой удачей получить исходные данные сразу в пригодном для визуализации формате. Часто приходится создавать новые переменные или сводные таблицы, переименовывать переменные или изменять порядок следования наблюдений, чтобы сделать данные немного проще для повышения наглядности их визуализации. Рассмотрим,
Сосредоточимся на том, как использовать пакет dplyr, – один из базовых инструментов tidyverse. Проиллюстрируем ключевые идеи, используя данные из базы nycflights13, и пакета ggplot2, чтобы визуализировать эти данные.
library(nycflights13)
library(tidyverse)
Обратите внимание на сообщение о возможных конфликтах, которое выводится при загрузке tidyverse, так как dplyr перезаписывает некоторые функции R. Если хотите использовать эти функции после загрузки dplyr, то нужно будет вводить их полные имена через два двоеточия, например, stats::filter.
Чтобы изучить основные способы работы с данными из dplyr, будем пользоваться базой данных nycflights13::flights, она содержит информацию по всем 336 776 рейсам, вылетевшим из Нью-Йорка. Данные поступают из Бюро статистики транспорта США, и вы можете с ними ознакомиться в любое время, просто введя в консоли:
flights
Заметим, что эта база данных при выводе в консоль отличается от вывода из других баз данных, которые применяли ранее. Показаны лишь первые несколько строк и столбцы, которые поместились на экране. Чтобы просмотреть весь набор данных, необходимо запустить:
view(flights)
Откроется таблица средствами просмотра RStudio, в слегка упрощенном виде, чтобы легче было применять инструментарий tidyverse. На данный момент не нужно беспокоиться о нюансах, позже вернемся к табличному представлению данных в соответствующей главе. Ряд из нескольких буквенных сокращения под названиями столбцов описывает тип каждой переменной: int означает целые числа; dbl означает действительные числа; chr означает символьные строки; dttm означает дату-время (дата + время). Существуют и другие распространенные типы переменных, они не используются в данном наборе, но будут рассмотрены отдельно: lgl означает логические значения, которые содержат только TRUE или FALSE; fctr означает факторы, которые R использует для представления категориальных переменных с фиксированными возможными значениями; date означает данные.
Следующие пять ключевых функций dplyr позволяют решить подавляющее большинство задач обработки данных: filter отфильтрует наблюдения по заданным условиям; arrange меняет порядок строк; select выберет переменные по их именам; mutate создаёт новые переменных со свойствами существующих переменных; summary сворачивает множество значений
Все функции работают по общей схеме:
1) Первый аргумент – фрагмент данных.
2) Последующие аргументы описывают, что нужно делать с выбранными данными, используя имена переменных без кавычек, либо в одиночных апострофах кавычках «'», если имена содержат пробел « ».
3) Результатом является новый фрагмент данных.
Перечисленные свойства делают легко реализуемой последовательность из нескольких простых шагов к достижению желаемого результата. Разберем на примерах, как это работает. filter позволяет выбирать подмножество наблюдений на основе определенных условий. Первый аргумент содержит имя базы данных. Второй и последующие аргументы являются выражениями, фильтрующими данные. Например, выберем все рейсы на 5 мая следующей командой:
filter(flights, month == 5, day == 5)
Когда запускаете эту строку кода, dplyr выполняет операцию фильтрации и возвращает новый блок данных. Функции dplyr никогда меняют входные данные, поэтому, если понадобится сохранить результат, то придется использовать оператор присваивания:
may5 <– filter(flights, month == 5, day == 5)
R либо распечатывает результаты, либо сохраняет их в переменную. Когда нужно сделать и то, и другое, команда заключается в круглые скобки:
(may5 <– filter(flights, month == 5, day == 5))
Чтобы эффективно использовать фильтрацию, нужно знать, как выбрать наблюдения, используя операторы сравнения. R предоставляет стандартный набор операторов: > (больше), >= (больше или равно), < (меньше), <= (меньше или равно), != (не равны), == (равны). Начинающие пользователи R зачастую ставят = вместо == при проверке равенства. Если допустить такое, то возникнет предупреждение об ошибке. Есть еще одна распространенная проблема, с которой сталкиваются при использовании ==, это числа с плавающей запятой. Поистине альтернативная арифметика:
sqrt (4) ^ 2 == 4
# > [1] TRUE
sqrt (5) ^ 2 == 5
# > [1] FALSE
1 / 50 * 50 == 1
# > [1] TRUE
1 / 49 * 49 == 1
# > [1] FALSE
Дело в том, что в R используется арифметика конечной точности, так как затруднительно хранить бесконечное количество цифр, либо реализовывать алгебраический подход. Поэтому каждое число в R является приближением, а вместо оператора == нередко используется функция near, позволяющая сравнивать приближенные величины:
near(sqrt(5) ^ 2, 5)
# > [1] TRUE
Несколько аргументов функции filter перечисленные через запятую равносильны объединению условий союзом «и», при этом, каждое выражение должно оказаться истинным, чтобы из входных данных соответствующая запись была сохранена в выходные данные. Для остальных логических связок можно использовать булевы операторы: & это «и», | это «или», ! это отрицание «не», xor(x, y) это исключающее или с аргументами x, y.