Чтение онлайн

на главную - закладки

Жанры

Основы статистической обработки педагогической информации
Шрифт:

задержки <– неотмененные %>%

group_by(tailnum) %>%

summarise(

средняя_задержка = mean(arr_delay, na.rm = TRUE),

количество_выполненных_рейсов = n

)

ggplot(data = задержки, mapping = aes(x = количество_выполненных_рейсов,

y = средняя_задержка)) +

geom_point(alpha = 1/15)

Неудивительно, что на частых рейсах задержек практически не наблюдается, а в основном задерживаются те борта, чьих рейсов мало.

Что характерно, и в принципе соответствует статистическому закону больших чисел: всякий раз, когда ищется среднее значение (или другая сводка) в сравнении с размером группы, приходят к выводу, что вариативность вычисленного значения уменьшается по мере увеличения объема выборки.

Именно поэтому, когда решаете аналогичные задачи, полезно отфильтровывать группы с наименьшим количеством наблюдений, тогда можно будет увидеть общие закономерности и уменьшить выбросы значений на малых группах. На примере следующего кода будет демонстрирован удобный шаблон интеграции ggplot2 с каналами в dplyr. Немного странным может показаться смешение стилей %>% и +, дело привычки, со временем это станет естественным. Отфильтруем на предыдущем графике экспериментальные самолёты с малым количеством вылетов, не превышающим 33:

задержки %>% filter(количество_выполненных_рейсов > 33) %>%

ggplot(mapping = aes(x = количество_выполненных_рейсов,

y = средняя_задержка)) +

geom_point(alpha = 1/15)

Полезным сочетанием клавиш RStudio является Ctrl + Shift + P, для повторной отправки ранее отправленного фрагмента из редактора в консоль. Это очень удобно, когда экспериментируете с граничным значением 33 в приведенном выше примере: отправляете весь блок в консоль нажатием Ctrl + Enter, а затем изменяете значение границ фильтрации на новое и нажимаете Ctrl + Shift + P, чтобы повторно отправить весь блок в консоль.

Есть еще одна хрестоматийная иллюстрация к применению изложенного метода. Рассмотрим среднюю эффективность бейсбольных игроков относительно количества подач, когда они находятся на базе. Воспользуемся данными из пакета Lahman для вычисления среднего показателя эффективности (количество попаданий / количество попыток) каждого ведущего игрока бейсбольной лиги.

Историческая справка. Не сказать чтобы бейсбол был нашей национальной забавой, но многие в России знают «сколько пинчеров на базе», и именно россиянин, уроженец Нижнего Тагила, Виктор Константинович Старухин стал первым питчером, кто одержал 300 побед в японской бейсбольной лиге, являясь одним из лучших бейсболистов мира в 20 веке.

Когда строится график визуализирующий уровень мастерства игроков, измеряется среднее значение эффективных попаданий по мячу по отношению к общему количеству предпринятых попыток, возникает две статистические предпосылки:

1. Как было в примере с самолётами, вариативность показателей уменьшается при увеличении количества наблюдений.

2. Существует положительная корреляция между результативностью и элементарно предоставляемой возможностью бить по мячу. Дело в том, что команды контролируют свой состав, поэтому очевидно, что на поле выходят только лучшие игроки из лучших.

Предварительно преобразуем сведения об ударах игроков в табличную форму, так они легче воспринимаются:

удары <– as_tibble(Lahman::Batting)

эффективность <–

удары %>%

group_by(playerID) %>%

summarise(

результативность = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE),

возможность = sum(AB, na.rm = TRUE)

)

эффективность %>%

filter(возможность > 100) %>%

ggplot(mapping = aes(x = возможность, y = результативность)) +

geom_point +

geom_smooth(se = FALSE)

Функция geom_smooth здесь формирует график методом обобщенных аддитивных моделей с интегрированной оценкой гладкости (method = "gam") рассчитывая значения по формуле formula = y ~ s(x, bs = "cs"), так как имеется более 1 000 наблюдений.

Особый интерес вызывает ранжирование результатов. Если наивно отсортировать показатели эффективности по убыванию результативности, то первыми с самой лучшей результативностью окажутся скорее везучие, а не квалифицированные игроки, за всю карьеру сделавшие лишь 1 удар, но при этом попавшие по мячу:

эффективность %>%

arrange(desc(результативность))

Можно найти хорошее объяснение этого парадокса в пословице «новичкам везёт». Используя простые инструменты, подсчет количества одинаковых значений, их суммирование, можно долго искать любопытные закономерности, но R предоставляет и много других полезных функций для генерации статистических отчетов:

Выше использовалась функция, вычисляющая среднее значение mean(x), но вычисляющая медианное значение функция median(x) тоже бывает полезна. Ведь среднее как 36.6° по больнице, а медиана – это величина, относительно которой 50% значений x находится выше, и 50% находится ниже, что гораздо информативнее. Иногда полезно комбинировать подобные функции с логическим условием. Мы еще не говорили о таких вещах как подмножество значений, этому можно посвятить целый раздел, пока лишь приведем наглядный пример, на тех же неотмененных авиарейсах, сгруппированных по дате вылета.

Отрицательные значения «задержки» рейса символизируют прибытие с опережением графика, оказывается, такое тоже бывает:

неотмененные %>% group_by(year, month, day) %>%

summarise(

средняя_задержка = mean(arr_delay),

средняя_положительная_задержка = mean(arr_delay[arr_delay > 0])

)

Особый интерес вызывают функции вычисления стандартного отклонения sd(x), меры разброса наблюдаемой величины, вычисления интерквартильного размаха IQR(x) и вычисления медианы абсолютного отклонения mad(x), которые являются надежными эквивалентами друг друга и могут быть полезны, если у данных есть выбросы. Любопытно, почему расстояние до одних пунктов назначения варьируются сильнее, чем до других, являя собой не иначе как чудеса телепортации:

неотмененные %>% group_by(dest) %>%

summarise(среднеквадратическое_отклонение_дистанции = sd(distance)) %>%

arrange(desc(среднеквадратическое_отклонение_дистанции))

Функции поиска минимального значение min(x), первого квантиля quantile(x, 0.25), вычисления максимума max(x), неизменные спутники при построении ранжирования. Квантили являются обобщением медианы. Так, например, quantile(x, 0.25) найдет значение x, которое больше чем 25% значений из всех возможных значений анализируемой переменной, и меньше чем остальные 75%.

Поделиться:
Популярные книги

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Зайти и выйти

Суконкин Алексей
Проза:
военная проза
5.00
рейтинг книги
Зайти и выйти

Кто ты, моя королева

Островская Ольга
Любовные романы:
любовно-фантастические романы
7.67
рейтинг книги
Кто ты, моя королева

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Часовая башня

Щерба Наталья Васильевна
3. Часодеи
Фантастика:
фэнтези
9.43
рейтинг книги
Часовая башня

Третий. Том 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Третий. Том 4

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Затерянные земли или Великий Поход

Михайлов Дем Алексеевич
8. Господство клана Неспящих
Фантастика:
фэнтези
рпг
7.89
рейтинг книги
Затерянные земли или Великий Поход

(Не)зачёт, Дарья Сергеевна!

Рам Янка
8. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
(Не)зачёт, Дарья Сергеевна!

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Русь. Строительство империи 2

Гросов Виктор
2. Вежа. Русь
Фантастика:
попаданцы
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи 2