От Хиросимы до Фукусимы
Шрифт:
Работа с промышленным плутонием, в том числе изготовление топлива и перевозка, является очень сложным технологическим процессом. Важно отметить, что существующие федеральные нормы и правила обеспечения ядерной и радиационной безопасности для многих видов работ отсутствуют, а ведомственная нормативная база не может быть использована, так как носит закрытый характер и охватывает круг технологий оружейного характера, не предусматривающих использование оружейного плутония в качестве топлива АЭС.
Свердловская область является крупным производителем энергии и занимает пятое место в РФ по этому показателю. При этом важно учитывать, что в России в целом предложение превышает спрос на электроэнергию, по крайней мере, на треть. Свердловская область
44
«Энергетическая стратегия Свердловской области: реальность и перспективы», Уральский экологический союз, «Экозащита!», Екатеринбург, 2007.
Первоначальная расчетная стоимость строительства блока БН-800 составляла $1,2–1,3 млрд. Сегодня эта цифра выросла более чем в три раза. Себестоимость реактора-бридера в несколько раз больше, чем капитальные вложения в другие типы электростанций такой же мощности. Важно отметить также, что, по словам бывшего министра РФ по атомной энергии Виктора Михайлова, оружейный плутоний (основное топливо для бридеров) в четыре раза дороже 90 % урана-235. Экспертная оценка бизнес-плана сооружения блока БН-800 показала, что при расчете занижены суммы средств, которые необходимо отвлекать в первые годы функционирования энергоблока на обслуживание и возврат заемных средств, а также отпускной тариф на электроэнергию [45] .
45
Кузнецов Б.М., Поляков Б.Ф.Доклад «Настоящее и будущее быстрых реакторов. Некоторые вопросы экономики БН-800». 2001.
В расчет себестоимости электроэнергии от БН-800 не включены следующие составляющие:
– полная стоимость обращения с радиоактивными отходами (хранение, переработка и транспортировка);
– стоимость начальной загрузки уран-плутонивого ядерного топлива;
– стоимость доставки и хранения свежего топлива, а также транспортировки и переработки отработанного ядерного топлива;
– инфляционное удорожание ядерного топлива за период эксплуатации БН-800;
– снятие с эксплуатации АЭС с БН-800;
– стоимость страхования рисков и компенсации возможного радиационного ущерба, связанного с работой АЭС с БН-800 на всех этапах жизненного цикла станции. Стоимость «атомного» электричества оказывается очень высокой, если включить в нее фонд страхования населения, проживающего около АЭС, обращение с радиоактивными отходами и т. д [46] .
Кроме того, не учтена в проекте и плата за сбросы загрязняющих веществ. В случае, если бы Белоярская АЭС платила за сбросы и выбросы, как это делают предприятия других отраслей, то ежегодно эта сумма составляла бы, по самой скромной оценке, по тритию – не менее 30 млн руб., по цезию-137 – около 150 млн руб. [47]
46
Там же.
47
«Энергетическая стратегия Свердловской области: реальность и перспективы», Уральский экологический союз, «Экозащита!», Екатеринбург, 2007.
Поколение 3
Реакторы
– Стандартизированный проект позволяет ускорить процедуру лицензирования, снизить затраты и продолжительность строительных работ.
– Упрощенная и более прочная конструкция, делающая их более простыми в обращении и менее восприимчивыми к сбоям в процессе эксплуатации.
– Высокий коэффициент готовности и более длительный период эксплуатации – примерно шестьдесят лет.
– Снижение вероятности аварий с расплавлением активной зоны.
– Глубокое выгорание топлива для снижения его расхода и количества отходов производства.
Из этого списка становится понятно, что основной целью проектов с реакторами третьего поколения является улучшение экономических показателей. Однако многие вопросы в отношении безопасности остались нерешенными, если мы сравниваем с предыдущими поколениями реакторов.
Такие реакторы пока нигде не работают, несколько находятся в стадии строительства в России, то есть в отношении ВВЭР-1200 отсутствует какая-либо статистика, подтвержденная длительным опытом эксплуатации. По проектам таких реакторов доступно не так много информации, как хотелось бы. Основные проблемы, которые сопутствуют проектам с такими реакторами, были описаны выше в разделе о новых российских АЭС. Вместе с этим хотелось бы остановиться на технологии «ловушка расплава», которая преподносится как решение проблемы крупных аварий с расплавлением активной зоны на ВВЭР-1200. Как считают европейские эксперты («ловушка» также присутствует в конструкции французского EPR), эта технология не может полностью предотвратить крупную аварию в связи с тем, что на реакторе может произойти взрыв до того, как «ловушка» будет задействована [48] . (Подробнее об этой новинке – ниже, в описании EPR.)
48
Froggatt, 2005.
EPR – это модель, созданная на основе французского N4 и немецкого KONVOI – разработок второго поколения, запущенных в эксплуатацию во Франции и Германии [49] .
Целью, поставленной при разработке EPR, было усовершенствование уровня безопасности реактора (в частности, снижение вероятности возникновения аварии в 10 раз), сокращение количества сложных аварий путем ограничения их влияния на собственное оборудование, а также уменьшение стоимости.
49
Hainz, 2004.
Однако по сравнению со своими предшественниками реактор EPR имеет несколько таких особенностей, от которых уровень безопасности снижается.
Схема реактора EPR
Во-первых, размер реакторного здания был уменьшен за счет упрощения схемы аварийного охлаждения активной зоны.
Во-вторых, по сравнению с N4 тепловая мощность реактора была увеличена на 15 % через изменение конструкции парогенераторов, позволяя основным насосам охлаждающего контура работать с более высокой мощностью.