Чтение онлайн

на главную - закладки

Жанры

От иммигранта к изобретателю

Пупин Михаил

Шрифт:

Роуленд однажды сказал, что недостаток времени и экспериментального оборудования, не является существенным оправданием для тех, кто окончательно забросил научные исследования. Я был с этим мнением согласен. Пренебрежение создает безразличие, а безразличие атрофирует волю к деятельности. Машина переменного гока в электротехнической лаборатории Колумбийского колледжа по вечерам была свободна, свободен был и я, то есть если моя жена позволяла мне работать по вечерам. Но, будучи благородной и сознательной женщиной, она никогда не возражала. С помощью нескольких преданных делу науки студентов — среди них был один из выдающихся сегодня американских инженеров Гано Данн — я начал исследовать прохождение электричества через различные газы при низком давлении и опубликовал об этом две статьи в «American Journal of Science» («Американский Научный Журнал»). Вскоре я узнал, что большинство результатов моих исследований были предвидены профессором Д.Д.Томсоном в Кэмбриджском университете, который, по всей вероятности, получил толчок к таким исследованиям из того же самого источника, что и я. Он не только предсказал результаты моих исследований, но показал лучшее понимание предмета и конечно имел лучшие экспериментальные

возможности. Я решил оставить это поле деятельности ему и наблюдать его работу со стороны. Это было мудрым решением, так как благодаря этому я подготовил себя к восприятию открытий в этой области, делавших эпоху. Эти открытия вскоре были объявлены — одно в Германии, а другое во Франции. Я обратился к другой области.

Я должен однако упомянуть об одном из моих исследований, не предвиденном Томсоном. Оно произвело на астрономов большое впечатление. Я заметил странное явление в электрическом разряде, проходившем от маленькой металлической сферы, которая была расположена в центре большой стеклянной сферы с воздухом малого давления. Разряды были очень похожи на корону солнца, наблюдаемую астрономами во время затмения и казавшуюся всегда загадкой в проблеме изучения солнца. Укрепив на стеклянной сфере фольговый диск так, чтобы видна была не сама металлическая сфера, а лишь проходящий от нее заряд, я сфотографировал явление этого разряда и получил интересный снимок. Сходство моих снимков с фотографиями двух типов солнечной короны резко бросается в глаза. Вот какое замечание сделал я тогда по этому поводу:

«Я не берусь судить каково отношение этих экспериментальных результатов к теории солнечной короны и предпочитаю оставить этот вопрос для решения другим. Но, кажется, они могут подсказать некоторые направления в изучении солнечных явлений».

В сообщении, сделанном позже нью-йоркской Академии Наук, я, обсудив предварительно этот вопрос с моими друзьями в университете Джонса Гопкинса и с профессором Янгом, знаменитым Принстонским астрономом, был еще смелее. Вскоре я начал сильно поддерживать электромагнитную теорию солнечных явлений. Немецкий профессор Эберт, хорошо известный авторитет по электрическим разрядам в газах, серьезно поддержал меня, что было конечно, отрадно, но приписывал эту заслугу себе. Мне было нетрудно установить мое право на приоритет через журнал «Astronomy and Astrophysic» («Астрономия и Астрофизика»), одним из редакторов которого был Г.Э.Гейл, нынешний директор Маунт-Вильсонской Обсерватории. Я был весьма счастлив познакомиться с ним в те времена, когда мы оба были молодыми людьми. Под его влиянием я стал осторожен с моей электромагнитной теорией солнечных явлений. Благодаря замечательным астро-физическим исследованиям в Маунт-Вильсонской Обсерватории в Калифорнии, проводившимся под руководством доктора Гейла, мы знаем сегодня, что на поверхности солнца циркулируют огромные электрические токи. Нам также известно из других исследований, что отрицательное электричество излучается всеми раскаленными телами, даже теми, которые раскалены в меньшей степени, чем солнце, и что солнечная корона, по всей вероятности, тесно связана с этими электрическими явлениями.

Оставив проблему электрических разрядов в газах, я стал искать другой предмет для исследований, которые я мог бы провести при ограниченных возможностях моей лаборатории. Роуленд обнаружил искажения в переменном токе, когда последний намагничивал железо электрической машины, производящей электрическую энергию. Эти искажения выражаются более высокой гармонизацией, дополнительной к нормальным гармоническим изменениям в токе. Это напоминало мне о гармонии в музыкальных инструментах и в человеческом голосе. Гельмгольц первый анализировал гласные звуки человеческой речи, изучая содержащуюся в них гармонию. Гласная «О», например, произносимая с определенной высотой, помимо ее основной высоты — допустим сто колебаний в секунду — содержит другие колебания, частота которых является краткими интегралами ста, то-есть двести, триста, четыреста… колебаний в секунду. Такие более высокие колебания называются основными гармониями. Гельмгольц обнаружил эти гармонии, применяя искусственные резонаторы. Это было выдающимся исследованием. Я стал искать средства для анализа искаженных переменных токов Роуленда и нашел их. Я сконструировал электрические резонаторы, основанные на механических принципах акустиковых резонаторов, примененных Гельмгольцем. Мои электрические резонаторы играют весьма важную роль в современной радиотехнике и не мешает, пожалуй, сказать о них несколько слов. Сегодня от Атлантического океана до Тихого миллионы людей хотят знать, что они делают, когда поворачивают валик в их радиоприемнике, чтобы найти правильную длину волны для какой-нибудь радиостанции. Я — виновник этой процедуры и я обязан им это объяснить.

Масса и форма упругого тела, скажем камертона, и его сила сопротивления определяют высоту тона, так называемую частоту колебаний. Если периодически изменяющаяся сила, скажем звуковая волна, действует на камертон, то максимальное движение концов его производится тогда, когда высота тона или частота движущей силы равна частоте камертона. Тогда говорят, что оба они находятся в резонансе, то есть движение камертона резонируется или синхронизируется с действием силы. Каждый гибкий предмет имеет присущую ему частоту. Столбик воздуха в трубке органа имеет свою частоту; то же относится и к струне рояля. Можно у всех этих предметов вызвать колебание, воспроизводя голосом ноту присущей им частоты. Нота различной частоты практически совсем не вызывает колебания. Явления акустического резонанса хорошо известны и не нуждаются здесь в дальнейшем объяснении. Существует также электрический резонанс, очень похожий на акустический. Если вы понимаете один из них, вы легко поймете и другой.

Если электрический проводник, скажем медная проволока, свертывается кольцеобразно, образуя спираль со многими оборотами, концы которой присоединяются к конденсатору, то есть к электропроводным пластинкам, разделенным между собою изолирующим материалом, то движение электричества по этой цепи тока подчиняется тем же законам, что и движение концов камертона. Всякое движение электричества

или материи полностью определяется силой, производящей его, а также силами, с помощью которых движущийся предмет реагирует на движение. Если закон действия этих сил тот же самый и для движущейся материи и для движущегося электричества, то их движения подобны. Движущие силы называются действием, а противоположные им силы — противодействием. Третий закон Ньютона о движении гласит: действие равно противоположному ему противодействую. Я всегда считал этот закон самым основным законом для всех естественных наук. Он применим ко всякому движению — безразлично, что из себя представляет движущийся предмет: весомую материю или невесомое электричество. Двадцать шесть лет тому назад мой студент А.Р.Гелатин, в знак признательности за мои лекции, подарил большую индукционную катушку электрической лаборатории Колумбийского колледжа. Данная мною формулировка основного закона электричества, говорил он, сделала для него в физике всё ясным. Это было весьма лестно для молодого профессора и конечно с этого времени мы стали близкими друзьями. Он — банкир, а я всё еще профессор, но интерес к основным принципам естественных наук связывает нас в этой дружбе.

Электрическая сила, движущая электричество по только что описанной цепи тока, испытывает два главных противодействия. Одно противодействие происходит вследствие электрических силовых линий, которые, будучи присущи электрическому заряду на пластинках конденсатора, оттесняются в изолирующее их друг от друга пространство. Противодействие соответствует эластическому противодействию концов камертона и подчиняется тому же закону. В примере с камертоном эластичное противодействие пропорционально перемещению концов камертона из их нормального положения. В электричестве противодействующая сила пропорциональна электрическим зарядам, которые были разъединены друг от друга — отрицательное от положительного — и направлены к пластинкам конденсатора. Назовите это разъединение электрическим перемещением и закону может быть дана та же формулировка, что и упомянутая выше, а именно: противодействующая сила пропорциональна электрическому перемещению. Чем больше расстояние между пластинками и чем меньше их поверхность, тем больше противодействие для данного электрического перемещения. Изменяя эти два соотношения, мы можем изменять так называемую емкость электрического конденсатора. В этом и заключается ваше действие, когда вы поворачиваете валик радиоприемника и изменяете емкость его конденсатора.

Вибрирующие концы камертона имеют инерцию, и всякое изменение инерции вызывает сопротивление противодействующей силе, так называемой инерции противодействия, которая равна скорости этого изменения. Это было открыто Галилеем более трехсот лет тому назад. Мы испытываем действие этого закона каждый раз, когда ударяемся о движущийся предмет. Ирландский матрос, упавший с корабельной мачты и уверявший своих друзей, что не падение ушибло его, а внезапная остановка падения, прекрасно охарактеризовал противодействующую силу, возникающую благодаря быстрой перемене в инерции. Каждый мальчик и девочка в общественных школах должны знать основной закон Галилея, и они будут его знать, если перед ними продемонстрировать несколько простых экспериментов. Но много ли найдется учителей, которые объясняют этот закон? Только подумать, какой позор для нашей современной системы образования иметь так много интеллигентных мужчин и женщин, юношей и девушек, не знающих основного закона Галилея, открытого так давно.

Движущееся электричество имеет инерцию. Магнитные силовые линии, производимые движением, являются мерилом этой инерции. Их изменение наталкивается на сопротивление противодействующей силы, равной скорости этого изменения. Это было открыто Фарадеем около ста лет тому назад. Чем больше число оборотов проволоки в катушке, тем сильнее будет инерция для данного электрического движения, то есть для данного электрического тока. Но как можно ясно понять этот стройный, открытый Фарадеем закон, не понимая более простого открытия Галилея? Тот факт, что электричество, точно так же как и материя, имеет инерцию и что оба они подчиняются тому же закону инерции, является одним из самых замечательных научных открытий. Каждый раз, когда я думал о том, что так много интеллигентных и культурных людей ничего не знают об этом, я осуждал систему образования современной цивилизации.

Движение электричества по проводнику, описанное выше, преодолевает противодействующие силы, подчиняющиеся тому же закону, что и движение гибких концов камертона. Оба движения поэтому аналогичны. В электрической цепи тока, имеющей спираль и конденсатор, движущееся электричество имеет определенную инерцию и определенную силу сопротивляемости. Поэтому оно будет иметь определенную высоту или частоту для своего колебательного движения, точно так же как и камертон. Оно будет действовать как резонатор. Отсюда ясно, что электрический резонатор, высота колебаний которого может регулироваться приспособлением его спирали или конденсатора или и того и другого, является отличной параллелью акустическому резонатору. С помощью электрического резонатора такого типа, имеющего приспособляемую спираль и конденсатор, мне удалось обнаружить гармонические колебания в искаженных переменных токах Роулэнда тем же путем, каким Гельмгольц обнаружил гармонию в гласных звуках, но со значительно большей легкостью, так как высота колебаний электрического резонатора может быть легко и аккуратно изменена регулированием его спирали и конденсатора. Сегодня миллионы людей проделывают эту операцию, когда они поворачивают валик радиоприемника, приспособляя его к длине волны радиостанции. Выражение: «приспособление радиоприемника к высоте или частоте колебаний радиостанции» — более подходящее, так как оно напоминает об аналогии, существующей между акустическим и электрическим резонансами. Процедура эта впервые была проделана тридцать лет назад в «коровьем хлеве» Колумбийского колледжа. Я назвал ее «электрической настройкой», и это название осталось за ней до настоящего времени. Слово «настройка» было подсказано мне действием, которое производит сербский волынщик при настройке своей волынки и которое я с большим интересом наблюдал, будучи еще мальчиком. Те ранние впечатления способствовали тому, что акустический и электрический резонансы явились мне позже, как само собой разумеющиеся явления.

Поделиться:
Популярные книги

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Жатва душ. Остров мертвых

Сугралинов Данияр
Фантастика:
боевая фантастика
рпг
5.20
рейтинг книги
Жатва душ. Остров мертвых

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Тайны ордена

Каменистый Артем
6. Девятый
Фантастика:
боевая фантастика
попаданцы
7.48
рейтинг книги
Тайны ордена

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Блуждающие огни 2

Панченко Андрей Алексеевич
2. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Блуждающие огни 2

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Ученье – свет, а богов тьма

Жукова Юлия Борисовна
4. Замуж с осложнениями
Фантастика:
социально-философская фантастика
юмористическая фантастика
космическая фантастика
9.37
рейтинг книги
Ученье – свет, а богов тьма

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Младший сын князя. Том 9

Ткачев Андрей Юрьевич
9. Аналитик
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
фантастика: прочее
5.00
рейтинг книги
Младший сын князя. Том 9