От наукоучения - к логике культуры (Два философских введения в двадцать первый век)
Шрифт:
А поскольку в переходе к новой теории должно быть оправдано (или отвергнуто) и исходное понятие "первичной" теории, то и практическое происхождение последней теперь должно быть представлено (переосмыслено) как логическое обоснование. Понятие, первоначально сформированное (или истолкованное) на путях формального индуктивного обобщения - возьмем этот банальный случай, - должно быть теперь понято как обоснованное совсем иной логикой, чем логика его эмпирического происхождения, должно быть обосновано логикой иного, нового (радикально нового, логически нового) понятия.
Возникает собственно логическая проблема. Необходимо возвращение "на круги своя". Пусть радикальное преобразование теории стало необходимым исторически (теория привела к выводам, противоречащим тем основаниям, из которых эти выводы были "дедуцированы"; караул, парадокс!). Но коль скоро это произошло, то вопрос встал строго логически: вся теория
...Продумав "изнутри" логические трудности и возможные компромиссы гегелевского "решения" логических парадоксов, мы вновь возвращаемся к категорическому императиву логики в его предельно бескомпромиссной, парадоксальной форме, но теперь это - форма парадокса творческого мышления. Резко возросла логическая конкретность "нашего" императива. Его смысл неожиданно получил историческое наполнение. Необходимость самообоснования понятий и суждений (помните, - иначе - антиномия между законом тождества и законом достаточного основания) теперь обернулась эвристическим требованием: логическое обоснование предполагает осмысление (во всеобще-логической форме) процесса перехода от старой теории к новой, процесса изобретения теорий.
Но ведь требование это - правда, пока еще без основания его радикально-всеобщего логического смысла - типичное дитя XX века, плод современной теоретической революции.
Мы начали с всеобщих логических трудностей, как будто независимых от современной логической ситуации. Сейчас начинает выясняться исторический смысл этой всеобщности. Весь поворот проблемы, преодоление ее мистичности отнюдь не наша заслуга. Это "заслуга" времени.
В XX веке одной из горячих точек в развитии науки оказались парадоксы теории множеств. Не входя сейчас в математические детали, обращу внимание на взрывную силу самой логической постановки вопроса.
В парадоксах теории множеств речь идет о возможности включения, к примеру, множества всех множеств, не являющихся собственными элементами, а число "подведомственных" этому определению множеств. Если это (бесконечное) множество есть элемент самого себя, то, значит... оно не является собственным элементом; если же оно не есть элемент самого себя (не является множеством, подпадающим под свое определение)... то именно тогда, и только тогда, оно является собственным элементом7.
Вот этот парадокс в расхожей, полушутливой редакции, предложенной Расселом. Деревенский брадобрей должен брить тех, и только тех, жителей деревни, которые не бреются сами. Должен ли брадобрей брить самого себя? Если он будет себя брить, значит, он бреетея сам, а значит, он себя брить не имеет права. Но если он себя не будет брить, значит, он имеет право себя брить... Шутейный этот парадокс демонстрирует глубокую парадоксальность "множества всех множеств, не являющихся собственными элементами".
В логическом плане существенно, что при таком подходе определение понятия "множество" перестает быть абстрактным ярлычком, объединяющим общие свойства класса "предметов". Само это определение рассматривается теперь не как имя для иных предметов, а как особый предмет, как особое множество (бесконечное), обладающее в свою очередь некими "свойствами". Теперь выясняется, что определение понятия не только может быть отнесено к самому себе, но что именно в таком самоотнесении (то есть только в понимании определения как "определенности", как предмета определения) понятие имеет смысл, может считаться обоснованным, а не произвольным. Но вся логика обычных, формальных определений и вся логика математического аппарата, при этом используемого, приспособлена была (в XIX веке) для понятий-ярлыков, терминов, для сокращенных наименований некоего иного предмета, иных предметов. Вот логическая основа всех "математических парадоксов". И понятие "множество" здесь только пример, образец, хотя отнюдь не случайный.
Указанный "пример" обнаруживает парадоксальность одного из самых благополучных отношений формальной (не математической) логики - отношения между объемом и содержанием понятия. По сути дела, в понятии "множество" впервые логически определяется (раскрывается) содержание самого понятия "объем понятия". И неожиданно оказывается, что если "объем" бесконечен, то есть если необходимо учитывать не только наличные объекты данного определения, но и возможные, конструируемые - по какой-то схеме идеализованные объекты (элементы), то тогда
Это и означает, что предмет реализуется в тождестве особенного и всеобщего определения; определение множества относится и к самому "определению" как особенному предмету. Сразу же возникает трудность самоотнесения понятий (понятие должно быть определением самого себя), сразу же рушится вся формальная теория определений и вся формальная теория дедукции.
Парадоксальным (невозможным для эмпирического бытия) оказывается сам предмет определения, взятый как определение предмета (самого себя). Ведь такой предмет должен в то же время и в том же самом отношении быть и особенным (конечным) предметом, и бесконечным всеобщим множеством!
Впрочем, математическая логика давно признала, что суть парадоксов теории множеств не в понятии "множество", но в понятии "понятие". Собственно, математико-логическая переформулировка теоретико-множественных парадоксов и говорит о парадоксе "самоприменимости" "несамоприменимых" понятий. Правда, математическая логика продолжает рассматривать этот парадокс только как формально логический (понятие применимо к себе тогда, и только тогда, когда оно к себе неприменимо) и не видит, что здесь речь идет о переходе формально-логического определения понятий в определение содержательно-логическое, диалектическое. В этой ситуации определение понятия (в процессе его самоотнесения) приходится рассматривать как особый предмет определения. В исходном парадоксе - как особое множество, а в собственно логической идеализации - как парадоксальную (бесконечную) форму бытия особенного (конечного) предмета (к примеру, как движение по бесконечно большой окружности, выступающее определением каждого конкретного инерционного движения).
Нас (автора и читателя) интересует сейчас лишь всеобще-логический смысл "парадоксов теории множеств" (проблема самообоснования). Что касается разрешения этих парадоксов, то это не наше дело, а дело самих математиков и математических логиков. Но все же выскажу несколько соображений и о разрешении парадоксов, но, конечно, только в содержательно-логическом плане. Это будут все те же размышления о проблеме самообоснования логики.
Вспомним еще раз расселовского брадобрея. Когда он бреет самого себя, то... жителя деревни бреет брадобрей. В качестве того, кого бреют, брадобрей принадлежит к множеству жителей поселка (которые не бреются сами), в качестве того, кто бреет, брадобрей относится к совсем иному множеству брадобреев. При тайком повороте выясняется, что речь идет не о парадоксальности определения одного логического субъекта двумя атрибутами, а о том, что, брея себя, брадобрей выступает (расщепляется) в двойном бытии брадобрея и жителя, в форме двух логических субъектов. Это во-первых. Во-вторых, брея себя, брадобрей превращает себя (жителя) в брадобрея и превращает себя, брадобрея, - в жителя поселка, который не бреется сам. Брадобрей здесь не только "относится" к двум множествам одновременно; брея себя, он порождает оба множества, определяет их. В момент бритья он возникает как элемент множества "не бреющих себя" и как элемент множества "брадобреев". Конечно, в плане наивной теории множеств он "бреется сам" (относится к множеству "самобреющихся"), но в строго логическом плане существенно его становление (его бытие - в возможности) как брадобреем, так и жителем, которого бреет брадобрей. Брея самого себя (наличное бытие), "он" делает себя небреющим (его бреет брадобрей) и делает себя (осуществляет, реализует себя) в качестве брадобрея. И здесь не просто игра слов или спекуляция на неряшливости исходных определений, как решит формальный логик. Безусловно, я могу сказать, что неопределенное понятие "брадобрей" в парадоксе Рассела скрывает два понятия, два множества (брадобреев и жителей деревни), и если не путать два эти качества нашего Х, то никакого парадокса не будет. Сказать так возможно, и это будет правильно. Но тогда мы не поймем, что за внешней неряшливостью скрывается существеннейший логический момент. Именно по отношению к самому себе понятие брадобрея оказывается не элементом множества, а учредителем, основателем радикально (логически) нового множества.