Отпечаток перстня
Шрифт:
Опыты Мак-Конелла решили повторить на кафедре высшей нервной деятельности Московского университетета. После рибонуклеазы планарии забывали все. Но как действует рибонуклеаза, неужели прямо просачивается через кожу? Хорошо бы ввести ее прямо в ганглий и посмотреть, что из этого выйдет. Московские планарии слишком малы для такой операции, и москвичи отправились экспериментировать на Байкал, где живут планарии длиной в сорок сантиметров. После введения РНК-азы в ганглий байкальские вели себя не лучше московских. Нина Александровна Тушмалова выяснила также, что РНК-аза мешает выработке нового рефлекса, а старый только тормозит. Через некоторое время после РНК-азы планарии вспоминают то, чему их прежде учили. Выходит, следы содержатся не в РНК, и Хиден неправ. Но где же они содержатся? Тем временем в Пущине тоже начали экспериментировать над планариями, но по иной методике: кусочки обученных планарий пересаживали необученным, и кусочки не только приживались, но и передавали свои знания новым хозяевам. От планарий перешли к мучному хрущаку, который принадлежит к особям не регенерирующим, а метаморфозирующим – проходит стадии превращения яйца в личинку, личинки в куколку и куколки в насекомое. В процессе метаморфоза у хрущака перестраивается все тело, но часть нервных клеток, регулирующих перестройку, сохраняется на всех стадиях в неприкосновенности. Хрущака и его личинку научили оборонительному рефлексу, движению по лабиринту в нужном направлении и оставили в покое до тех пор, пока личинка не превратилась в жука, а жук не достиг зрелости. Пожилой жук успел подзабыть свой рефлекс, зато юный сдал экзамен на отлично. Опыт, полученный от личинки, так врезался в его ганглий, что его невозможно было даже научить ничему новому, и исследователи решили, что метаморфоз сыграл в его жизни роль самоусилителя
Да, именно планарии, возражали Джекобсону скептики. Неспроста каннибалы становились сообразительными даже тогда, когда их жертв ничему не учили, а просто подвергали действию света или тока. РНК это не переносчик навыка, а стимулятор обучения. Журнал «Science» напечатал заявление представителей шести институтов, которым не удалось получить те же результаты, что и Джекобсону. Не получили их и биологи из МГУ, усомнившиеся в джекобсоновской сенсации. Бесспорными остались два факта – улучшение памяти у пациентов Камерона и тормозящее влияние РНК-азы на выработку рефлексов у планарий. Что же именно разрушает РНК-аза? Выяснить это решено на кроликах и крысах. Для контроля РНК-азу ввели в зрительную и двигательную кору: кролики продолжали исправно дергать зубами за кольцо, за что и получали в награду морковку или одуванчик. А теперь – в гиппокамп! Так и есть: кролики в полном смятении. РНК-аза – аналог электрошока: препятствуя синтезу РНК, она препятствует и консолидации следов.
Опыты варьируются и так и этак, вывод же из них напрашивается только один: РНК это катализатор нервного процесса, не больше. Она повышает клеточную возбудимость и облегчает циркуляцию импульсов. Все рефлексы в конце концов восстанавливаются, а это значит, что следы записываются не на РНК.
Хорошо, но ведь доказал же Хиден, что после обучения в молекулах РЫК меняется соотношение нуклеотидов. Это не меняет дела, утверждает профессор Ф. 3. Меерсон. Такую же перестройку можно наблюдать не только в РНК мозговых клеток, но и в молекулах других органов, например в сердце, если заставить работать его с усиленной нагрузкой. Все это неспецифический, вторичный эффект. Под влиянием подобных возражений и собственных размышлений Хиден больше не настаивает на РНК. У Хидена возникает новая схема: запись начинается все-таки с ДНК: хоть она и занята передачей наследственной информации, в ее молекулах найдется место и для индивидуального опыта. Остается решить, где скапливается тот белок, который будет хранить запись, узнавать свои импульсы и запускать циркуляцию при воспроизведении. Возможно, его место в постсинаптической мембране – в той части нейрона, куда сигнал приходит вместе с медиатором от соседнего нейрона.
Но почему речь должна идти только о нейронах и их молекулах? Ведь нейронные цепи окружены глиальными клетками, которых раз в десять больше, чем самих нейронов. А что, если глия тоже участвует в записи следов? Такую гипотезу еще до каннибалических сенсаций выдвинул американский нейрофизиолог Роберт Галамбос. Было известно, что глия поставляет нейронам материал для РНК. Галамбос же стал доказывать, что не только поставляет, но и программирует работу нейронов, сообщает им, в какой последовательности им следует работать. Профессор Эйди, тоже американец, обнаружил, что глиальные клетки, вплотную прилегающие к нейронам, долго сохраняют изменения в своей способности проводить ток. Может быть, говорил он на конференции по биокибернетике в 1971 г., в Ростове-на-Дону, изменения в глие влияют на нейронные импульсы, и это влияние не лишено информативного содержания. Пущинские биологи измерили, сколько же времени глня хранит следы активности нейрона. Оказалось, десятки часов: может быть, Эйди и прав. Но Cамое, пожалуй, интересное удалось открыть члену-корреспонденту АН СССР А. И. Ройтбаку. Прямо в микроскоп Ройтбак наблюдал, как под действием медиаторов отростки глиальных клеток вытягиваются к месту выделения медиатора. Это был самый настоящий таксис, автоматический рефлекс, который мы наблюдали у асцидий и гусениц. Всякий таксис, как и обновление состава РНК, это зачаточная, или донервная, память, это всего лишь «изменение от употребления», подобное изменению в мышцах. Ф. 3. Меерсон считает, что лучшего определения памяти вообще, чем «изменение от употребления», в наши дни не придумаешь: кратко и исчерпывающе. Но если миллиарды наших «асцидий» будут реагировать все вместе, да еще согласованно и непрерывно, не сложится ли из этих квинтиллионов таксисов гигантское, многоуровневое и динамичное хранилище следов, которое будет уже не донервным, а вполне нервным, не механическим, а полным глубокого значения?
КОЛЛЕКТИВНЫЕ СОСТОЯНИЯ
Вытягивание глиальных клеток внесло приятное оживление в среду сторонников гипотезы проторения, наблюдавших за поисками внутримолекулярного кода с известным недоверием. Гипотеза проторения привлекала многих ученых – Рамона-и-Кахала, Павлова, а в наши дни Хебба, Экклза, Конорского. Последние воочию видели структурные изменения в клетках, причем не только в глиальных, но и в нервных. Если какой-нибудь аксон будет поврежден, связь нейрона с соседями не прервется: через некоторое время ствол аксона покроется ветвями терминалями, терминали начнут совершать движения, напоминающие движения амебы, их кончики будут становиться все тоньше и вытягиваться все дальше и, наконец, придут в соприкосновение с другими нейронами. Образуются новые синапсы. Наблюдая за ростом аксонов и глиальных клеток, нетрудно представить себе действие электрошока или рибонуклеазы и весь процесс консолидации следов. Достаточно только согласиться с тем, что след кодируется благодаря структурному сдвигу в клетке, приводящему к образованию новой связи в клеточном ансамбле. Волокно аксона или глии растет, вдруг мозг, охватывают судороги, кончик волокна сокращается, и теперь надо будет подождать, пока он не наберет силу и не начнет расти снова. Образ бури, пригибающей ветви, лишается своего переносного смысла. В этой картине разгадка и самоусиления следов, и амнезий, и всей необъятности нашей памяти. Один нейрон может установить десятки контактов со своими соседями, и даже если к старости у нас перемрет половина нейронов, самоусиление и тренировка сохранят нам все связи для воспроизведения заслуживающих того впечатлений.
РНК – участница синтеза белка, из которого состоят ветви. Ради этого синтеза и начинается в нейронах бурное образование РНК. Как хорошо показал Ф. 3. Меерсон в своей книге «Пластическое обеспечение функций организма» (где глава о памяти написана вместе с Р. И. Кругликовым), усиленная импульсация, вызываемая умственным напряжением, быстрее изнашивает белки, и они распадаются. В клетках образуются продукты распада – метаболиты изнашивания. Система белкового синтеза работает на принципе обратной связи. Образование метаболитов служит сигналом к восстановлению нарушенного равновесия – к началу нового синтеза РНК и белков. По мнению Меерсона, эти метаболиты, а не сама РНК, и делали крыс Джекобсона сообразительнее. Получив кусочки обученного мозга или даже ганглия, а с ним метаболиты, необученный мозг начинал активно синтезировать новый белок и воспринимал навык «с одного сочетания». Физиологов, экспериментировавших с рибонуклеазой, сначала удивляло, почему она не влияет на самую первую реакцию после обучения навыку. Объяснение простое: на первых порах нейронам хватает старого запаса РНК. Когда они истощаются, рефлекс угасает. С тех же позиций можно объяснить и перестановку нуклеотидов в молекулах. Новые ветви строятся из нового белка, а новому белку нужна новая и в структурном отношении РНК. Мириады связей охватывают весь мозг, вот почему никому не удалось найти хранилище следов в одном каком-нибудь месте и с помощью электрода навсегда изъять оттуда образ ноги или ботинка. Помнит весь мозг, помнит и умеет сливать все образы в единый процесс воспоминания. Возможно, следы записываются на многих уровнях и во многих отделах мозга: разрушен один, где запечатлены подробности, остается другой, где подробностей меньше, но зато отчетливо записано значение события или предмета. Природа склонна к иерархии. Сторонники гипотезы проторения и образования ансамблей не отрицают молекулярного кода. Они, подобно Лапласу, просто не нуждаются
Попытки примирить две главные гипотезы следов можно найти у американского нейропсихолога Карла Прибрама. «Молекулярное кодирование,- говорил он,- может быть предназначено для одних нужд, например, для немедленного узнавания, а синаптическое для других, например, для припоминания целых событий, развернутых во времени». В этих словах отражена самая главная из нынешних тенденций в подходе к следам, родившаяся задолго до их поисков, но завладевшая умами только в последнее десятилетие. Истоки этой тенденции мы видели уже у Аристотеля, который думал, что важнее всего не след, а его интерпретация – усилие души, носящее временной характер. «Нельзя приписывать пространственного отношения тому, что определено только во времени»,- заметил через много веков Кант, и Шеррингтон, сравнивший мозг с ткацким станком, с удовольствием процитировал Канта в одной из своих лекций. С Кантом соглашался Бергсон, настаивавший на том, что обсуждение работы мозга и психики следует вести в терминах времени, а не пространства. Окончательно формулируя эту тенденцию, Грей Уолтер сказал, что след памяти это «не вещь, а процесс, не монета, лежащая на столе, а свеча, горящая на алтаре». Не вещь, а процесс – вот в чем суть! В отрыве памяти от усилия припоминания, дощечки от считывания с нее, в подмене пламени и ткущегося узора монетой, лежащей на столе или в кошельке, кроется недолговечность и изъяны всех моделей, авторы которых сводили след к статичному отпечатку, имеющему точное местоположение. Дощечка с вдавленными раз и навсегда отпечатками настолько заворожила исследователей, что даже, говоря о связи памяти со временем, они придавали этой связи лишь гносеологический смысл, но как только дело доходило до обсуждения субстрата, замыкались в пространственных структурах. Хранение следов само собой превращалось в хранилище, в то, что можно было прощупать инструментом.
Рассматривая гипотезы о взаимодействии ума и мозга, в том числе гипотезу английского психолога Дж. Смайтиса, предположившего, что ум и мозг занимают различные трехмерные пространства некоего гиперпространства, Дж. Уитроу справедливо замечает, что нам незачем говорить о пространственной протяженности ума: мозг в силу своей материальности существует как в трехмерном пространстве, так и во времени, а ум существует только во времени. Это тоже процесс, а не вещь. Как же должно происходить взаимодействие ума и мозга? Подобно взаимодействию звука (в уме) с партитурой (на бумаге). Уитроу говорит, что ум, память и время являются самоотносящимися понятиями, и, анализируя их, мы пытаемся себя самих поднять за волосы. Но трудность эта преодолима, если мы согласимся с тем, что ум подобен мелодии. Это процесс интеграции тождества личности, имеющего протяжение и локализацию во времени, но не в пространстве, хотя он и имеет область влияния, наиболее сильного в окрестностях данного мозга. Заканчивается это рассуждение указанием на ту физическую аналогию, которая, видимо, уже приходит в голову читателя: «В атомной физике мы стали использовать идею неопределенности пространственной локализации материальных объектов. Возможно, что в случае ума мы сталкиваемся с чем-то подобным… Как бы то ни было… недостающее звено между психологическими и физиологическими аспектами деятельности мозга и тождества личности следует искать не в каком-то гипотетическом гиперпространстве, но скорее во временном измерении». Так оно и случилось: вчитайтесь еще раз в слова Прибрама: он говорит о памяти в терминах времени. Конференция о проблемах памяти, на которой Р. И. Кругликов говорил о сущности ретроградной амнезии, называлась «Конференцией о следовых процессах», не о следах, а о процессах, и это новшество академик М. Н. Ливанов специально подчеркнул в своем заключительном слове.
О принципе неопределенности, на который ссылается Уитроу, о том, почему Бор и Гейзенберг запретили совместное существование координаты и скорости, можно прочесть и в специальных и в популярных сочинениях, но для данного случая лучше всего обратиться к статье профессора А. С. Компанейца «Физика и психика», напечатанной в журнале «Наука и жизнь» (1971, № 7). Компанеец вспоминает, как Бор сравнивал процесс измерения в квантовой системе с воздействием воли на сознание. Слово влияет на мысль, отделяя ее от сопровождающих ее неясных ассоциаций и оттенков. Он вспоминает «Улисса», где «поток сознания» производит тягостное впечатление, потому что в нем по необходимости все выражено словами и в этом смысле, на какие бы ухищрения ни пускался Джойс, нереалистично. По мнению Бора, поиски словесного эквивалента мысли подобны действию измерения на квантовый прибор: прибор всегда грубее объекта, подвергающегося измерению. Желая что-нибудь вспомнить или заставить вспомнить другого, мы действуем на психику неконтролируемым образом. Извлекая информацию из ЭВМ, мы знаем, в каком состоянии была и осталась ее память; действие машины подчиняется принципу определенности, за ним можно следить, не нарушая его. Применительно к психике все наоборот: извлекая из нее сведения, мы вносим нарушение в ее работу и не знаем, что в ней переменилось. Не означает ли это, что закономерности мышления можно формулировать только на языке квантовой теории? Дать окончательный ответ на вопрос пока невозможно, но можно рассмотреть некоторые физические явления, изучение которых способно приблизить нас к разгадке природы памяти и мышления.
В 1911 г. Каммерлинг-Онесс обнаружил, что некоторые металлы при температуре в несколько градусов выше абсолютного нуля теряют электрическое сопротивление. Всем было ясно, что сверхпроводимость должна объясняться квантово-механическими законами, но объяснение было найдено только в 1956 г., когда удалось привлечь к нему новые факты и методы квантовой теории поля. Все электроны сверхпроводника объединены в коллективном состоянии, поэтому причины, воздействующие на отдельный электрон и приводящие к затуханию тока в обычном металле, этого состояния нарушить не могут. Физик Литтл попытался представить себе, какое строение могли бы иметь такие сверхпроводящие тела при комнатной температуре. Они должны состоять из длинных полимерных молекул, построенных в виде хребтов с боковыми привесками, подобными листьям на стебле. В хребте должны чередоваться простые и двойные химические связи, что и создает металлическую проводимость вдоль хребта; боковые же привески должны легко поляризоваться, то есть допускать быстрое смещение заряда с одного конца молекулы на другой. Поляризация привесков способна привести к особому взаимодействию между электронами, движущимися вдоль хребта, взаимодействию, которое и объединит их в коллективное состояние. Может быть, думает Литтл, длинные полимерные молекулы в клетках мозга находятся в квантовых состояниях, напоминающих сверхпроводящие. Если это так, то память основана на незатухающих токах в этих клетках: все, что мы помним, обязано сложнейшему коллективному состоянию мозговых молекул. Гипотеза эта кажется привлекательной Компанейцу. К сожалению, поведение столь сложных неавтономных систем не имеет еще надлежащего описания в аппарате квантовой теории, но квантовая теория отнюдь не перестала развиваться, и количество ее объектов далеко не исчерпано. О геометрически локализуемых клетках не может быть и речи, о гиперпространстве тоже. Нет, речь может идти о «пространстве квантовых состояний», которое неизмеримо богаче геометрического: даже в случае одного атома оно бесконечномерное. Вот как выглядит восковая дощечка Платона в глазах физика середины двадцатого столетия.
Привет из Загса. Милый, ты не потерял кольцо?
Любовные романы:
современные любовные романы
рейтинг книги
Диверсант. Дилогия
Фантастика:
альтернативная история
рейтинг книги
