Ответы на экзаменационные билеты по эконометрике
Шрифт:
5) обратная функция:
6) кривая Гомперца:
7) логистическая функция или кривая Перла-Рида:
Кривыми
Кривые насыщения применяются для характеристики явлений и процессов, величина роста которых является ограниченной величиной (например, в демографии).
Определение. S-образными кривыми называются кривая Гомперца и кривая Перла-Рида. Данные кривые представляют собой кривые насыщения с точкой перегиба.
S-образные кривые применяются для характеристики явлений, включающий в себя два последовательных процесса – ускорения и замедления достигнутого уровня развития. Подобные явления характерны для демографии, страхования и других областей.
Модели регрессии, нелинейные по оцениваемым коэффициентам, делятся на два класса:
1) модели регрессии, которые можно с помощью преобразований привести к линейному виду;
2) модели регрессии, которые невозможно привести к линейному виду.
Рассмотрим первый класс моделей регрессии.
Показательная функция вида
является нелинейной по коэффициенту 1 и относится к классу моделей регрессии, которые можно с помощью преобразований привести к линейному виду. Данная модель характеризуется тем, что случайная ошибка i мультипликативно связана с факторной переменной хi.
Данную модель можно привести к линейному виду с помощью логарифмирования:
Log yi=log 0+ хi* log1+ logi.
Для более наглядного представления данной модели регрессии воспользуемся методом замен:
log yi=Yi;
log 0=A;
log1=B;
logi=E.
В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:
Yi=A+Bхi+E.
Таким образом, можно сделать вывод, что рассмотренная показательная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов.
Другим примером моделей регрессии первого класса является степенная функция вида:
Данная модель характеризуется тем, что случайная ошибка i мультипликативно связана с факторной переменной хi.
Данную модель можно привести к линейному виду с помощью логарифмирования:
lnyi=ln0+1 lnхi + lni.
Для более наглядного
ln yi=Yi;
ln 0=A;
lnхi=Xi;
lni=E.
В результате произведённых замен получим окончательный вид показательной функции, приведённой к линейной форме:
Yi=A+1Xi+E.
Таким образом, можно сделать вывод, что рассмотренная степенная функция является внутренне линейной, поэтому оценки неизвестных параметров её линеаризованной формы можно рассчитать с помощью классического метода наименьших квадратов.
Рассмотрим второй класс моделей регрессии, нелинейных по оцениваемым коэффициентам.
Показательная функция вида
относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка i аддитивно связана с факторной переменной хi.
Степенная функция вида
относится к классу моделей регрессии, которые невозможно привести к линейной форме путём логарифмирования. Данная модель характеризуется тем, что случайная ошибка i аддитивно связана с факторной переменной хi.
Таким образом, для оценки неизвестных параметров моделей регрессии, которые нельзя привести к линейному виду, нельзя применять классический метод наименьших квадратов. В этом случае используются итеративные процедуры оценивания (квази-ньютоновский метод, симплекс-метод, метод Хука-Дживса, метод Розенброка и др.).
41. Модели регрессии с точками разрыва
Определение. Моделями регрессии с точками разрыва называются модели, которые нельзя привести к линейной форме, т. е. внутренне нелинейные модели регрессии.
Модели регрессии делятся на два класса:
1) кусочно-линейные модели регрессии;
2) собственно модели регрессии с точками разрыва.
Кусочно-линейные модели регрессии характеризуются тем, что вид зависимости между результативной переменной и факторными переменными может быть неодинаков в различных областях значений факторных переменных.
В качестве примера кусочно-линейной модели регрессии рассмотрим регрессионную зависимость показателя себестоимости единицы произведённой промышленной продукции (результативная переменная) от показателя объёма промышленного производства за месяц (факторная переменная). Исследуемые показатели связаны линейной зависимостью, т. к. с увеличением показателя объема промышленного производства показатель себестоимости единицы произведённой промышленной продукции снижается, и наоборот.
Но не всегда данная зависимость носит линейный характер. Если основные фонды, которые используются при производстве данной промышленной продукции, являются изношенным, то с увеличением показателя объема промышленного производства показатель себестоимости единицы произведённой промышленной продукции может также увеличиваться.