Чтение онлайн

на главную - закладки

Жанры

Ответы на экзаменационные билеты по эконометрике

Яковлева Ангелина Витальевна

Шрифт:

При условии, что изношенные основные фонды применяются для производства промышленной продукции до того момента, когда объём промышленного производства достигнет заранее определённого значения, можно построить кусочно-линейную модель регрессии. Предположим, что объём промышленного производства равен 500 единицам продукции. Тогда модель примет вид:

y=0+1x(x<=500)+2x(x>500),

где y – себестоимость единицы промышленной продукции;

x – объём промышленного производства за месяц;

(x<=500) и (x›500) –

логические выражения, принимающие значения 1, если они истинны, или 0, если они ложны.

Данная кусочно-линейная модель регрессии зависит от общего свободного члена 0 и углового коэффициента. Угловой коэффициент может быть равен либо 1 (если выражение (x<=500) истинно, т. е. равно единице), либо 2 (если выражение (x›500) истинно, т. е. равно единице).

Значение показателя объёма промышленной продукции, равное 500 единицам, считается точкой разрыва кривой регрессии.

Если же точка разрыва кривой регрессии не задана или её невозможно точно определить, то значение данной точки можно оценить с помощью дополнительного коэффициента, включённого в модель регрессии.

Заменим логические выражения в построенной кусочно-линейной модели регрессии на коэффициент 3. В результате модель примет вид:

y=0+1x(x<=3)+2x(x>3).

Собственно модели регрессии с точками разрыва характеризуются скачкообразными изменениями зависимой переменной в нескольких точках кривой регрессии. Кусочно-линейную модель регрессии можно преобразовать в собственно модель регрессии с точками разрыва.

Допустим, что при достижении основными фондами определённого уровня изношенности, себестоимость единицы промышленной продукции резко выросла, а затем продолжила медленно снижаться при условии увеличения объёмов производства данной продукции. В этом случае регрессионная зависимость примет вид:

y=(0+1x)(x<=500)+(3+2x)(x>500).

В связи с тем, что модели регрессии с точками разрыва являются внутренне нелинейными, то неизвестные параметры данных моделей нельзя оценить с помощью классического метода наименьших квадратов. Для оценки этих параметров применяются итерационные методы нелинейного оценивания и метод максимального правдоподобия.

Если в начале эконометрического моделирования перед исследователем стоит выбор между моделью регрессии, внутренне нелинейной и линейной моделью регрессии (или сводящейся к линейному виду), то предпочтение отдаётся линейным формам моделей.

42. Метод наименьших квадратов для моделей регрессии, нелинейных по факторным переменным

Если модель регрессии является нелинейной по факторным переменным или нелинейной по оцениваемым коэффициентам, но внутренне линейной, то неизвестные коэффициенты данных моделей можно оценить с помощью классического метода наименьших квадратов.

Рассмотрим применение метода наименьших квадратов для определения неизвестных параметров модели регрессии, нелинейной по факторным переменным.

Параболическая функция второго порядка вида

является моделью регрессии, нелинейной по факторным переменным xi.

Метод наименьших

квадратов позволяет получить такие оценки параметров 0,1 и 2 при которых сумма квадратов отклонений фактических значений результативного признака от расчетных (теоретических) минимальна:

В процессе минимизации исходной функции регрессии неизвестными являются только значения коэффициентов 0,1 и 2, потому что значения результативной и факторной переменных известны из наблюдений. Для определения минимума функции трёх переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений.

Составим стационарную систему уравнений для функционала F, не пользуясь методом замен:

После элементарных преобразований стационарной системы уравнений, получим систему нормальных уравнений, позволяющую определить значения неизвестных коэффициентов параболической функции:

Данная система является системой нормальных уравнений относительно параметров

для параболической функции второго порядка.

Полученная система нормальных уравнений является квадратной, т. к. количество уравнений равняется количеству неизвестных переменных, поэтому коэффициенты

можно рассчитать с помощью метода Крамера или метода Гаусса.

Если рассматривать полиномиальную функцию n– ой степени вида

то для определения оценок неизвестных коэффициентов данной модели регрессии методом наименьших квадратов минимизируется функционал F:

Для определения минимума функции нескольких переменных вычисляются частные производные этой функции по каждому из оцениваемых параметров и приравниваются к нулю. Результатом данной процедуры будет стационарная система уравнений:

Решением данной стационарной системы уравнений будут оценки неизвестных коэффициентов полиномиальной функции n-ой степени.

43. Метод наименьших квадратов для моделей регрессии, нелинейных по оцениваемым коэффициентам

Поделиться:
Популярные книги

Кротовский, побойтесь бога

Парсиев Дмитрий
6. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кротовский, побойтесь бога

Часограмма

Щерба Наталья Васильевна
5. Часодеи
Детские:
детская фантастика
9.43
рейтинг книги
Часограмма

В семье не без подвоха

Жукова Юлия Борисовна
3. Замуж с осложнениями
Фантастика:
социально-философская фантастика
космическая фантастика
юмористическое фэнтези
9.36
рейтинг книги
В семье не без подвоха

Полковник Гуров. Компиляция (сборник)

Макеев Алексей Викторович
Полковник Гуров
Детективы:
криминальные детективы
шпионские детективы
полицейские детективы
боевики
крутой детектив
5.00
рейтинг книги
Полковник Гуров. Компиляция (сборник)

Черный маг императора

Герда Александр
1. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора

Игра Кота 3

Прокофьев Роман Юрьевич
3. ОДИН ИЗ СЕМИ
Фантастика:
фэнтези
боевая фантастика
8.03
рейтинг книги
Игра Кота 3

Карабас и Ко.Т

Айрес Алиса
Фабрика Переработки Миров
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Карабас и Ко.Т

Корпорация «Исполнение желаний»

Мелан Вероника
2. Город
Приключения:
прочие приключения
8.42
рейтинг книги
Корпорация «Исполнение желаний»

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Моя на одну ночь

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
5.50
рейтинг книги
Моя на одну ночь

Поле боя – Земля

Хаббард Рональд Лафайет
Фантастика:
научная фантастика
7.15
рейтинг книги
Поле боя – Земля

Пипец Котенку!

Майерс Александр
1. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку!

Адвокат империи

Карелин Сергей Витальевич
1. Адвокат империи
Фантастика:
городское фэнтези
попаданцы
фэнтези
5.75
рейтинг книги
Адвокат империи

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар