Чтение онлайн

на главную - закладки

Жанры

Параллельное и распределенное программирование на С++
Шрифт:

Главное внимание необходимо уделить сетевому доступу пользователя, запускаю щ его PVM-программу. Владелец PVM-программы должен иметь доступ к каждому компьютеру, включенному в пул процессоров. Этот доступ будет использовать либо команду rsh, либо rlogin, либо ssh. Выполняемая программа должна быть доступна на каждом компьютере, а PVM-среда должна быть «в курсе» того, какие компьютеры имеются в наличии и где будут инсталлированы выполняемые файлы.

# Строки комментариев начинаются с символа "#"

# (пустые строки игнорируются).

# Строки, начинаю щ иеся с символа "&", позволяют

# включить компьютеры в среду PVM позднее. Если

# имя компьютера не предваряется символом "&",

# этот компьютер включается в среду PVM

# автоматически.

flavius marcus

&cambius lo=romulus &karsius

# Символ означает стандартные опции для

# следую щ их компьютеров

# dx=/export/home/fred/pvm3/lib/pvmd &octavius

# Если компьютеры являются частью типичного

# linux-кластера, то их имена можно использовать

# для включения узлов кластера в среду PVM

# вместе с другими узлами. _

Объединение динамической С++-библиотеки c библиотекой PVM

Поскольку

доступ к PVM-средствам обеспечивается через коллекцию библиотечных функций, С++-программа использует PVM как любую другую библиотеку. Следует иметь в виду, что каждая PVM-програм м а представляет собой автономную C++-программу с собственной функцией main . Это означает, что все PVM-программы имеют собственное адресное пространство. При порождении каждой PVM-задачи создается ее собственный процесс с новым а д ресным пространством и, соответственно, идентификационный номер процесса. PVM-процессы ви д имы для утилиты ps. Несмотря на то что несколько PVM-задач могут выполняться вместе для решения некоторой пробле м ы, они будут иметь собственные копии динамической C++-библиотеки. Каждая программа имеет собственный поток iostream, библиотеку шаблонов, алгоритмы и пр. В область видимости глобальных С++-пере м енных адресное пространство не попадает. Это означает, что глобальные переменные одной PVM-задачи невидимы для других PVM-задач. Для взаимодействия отдельных задач используется м еханизм передачи сооб щ ений. Этим они отличаются от многопоточных программ, в которых потоки разделяют одно адресное пространство и могут взаимодействовать посредством глобальных переменных и передачи параметров. Если PVM-программы выполняются на одном компьютере с несколькими процессорами, то как дополнительные средства коммуникации программы могут совместно использовать файловую систе м у, каналы, FIFO-очереди и об щ ую па м ять. Несмотря на то что передача сооб щ ений — основной метод взаимодействия между PVM-задачами, ничто не мешает им в качестве дополнительных средств использовать файловую систе м у, буфер об м ена или даже аргументы командной строки. PVM-библиотека не ограничивает, а расширяет возможности динамической С++-библиотеки.

Методы использования PVM-задач

Работу, которую выполняет С++-программа, можно распределить между функциями, объектами или их сочетаниями. Действия, выполняемые программой, обычно делятся на такие логические категории: операции ввода-вывода, интерфейс пользователя, обработка базы данных, обработка сигналов и ошибок, числовые вычисления и т.д. Отделяя код интерфейса пользователя от кода обработки файлов, а также код процедур печати от кода числовых вычислений, мы не только распределяем работу програ м мы между функциями или объектами, но и стараемся выделять категории действий в соответствии с их характером. Логические группы организуются в библиотеки, модули, объектные шаблоны, компоненты и оболочки. Такой тип организации мы поддерживае м и при внесении PVM-задач в С++-програ мм у. Мы може м подойти к деко м позиции работ (work breakdown structure), используя м етод либо восходя щ его, либо нисходя щ его проектирования. В любом случае параллелиз м должен естественно вписываться в работу, которая на м ечена для выполнения функцией, модулем или объектом.

Не самая удачная идея — попытаться директивно навязать параллелиз м програ мм е. Искусственно насаждае м ый параллелиз м является причиной фор м ирования гро м оздкой архитектуры, которая, как правило, трудна для пони м ания и поддержки и создает сложности при определении корректности програ мм ы. Поэто м у, если програ мм а использует PVM-задачи, они должны быть результато м естественного разбиения программы. Каждую PVM-задачу следует отнести к одной из функциональных категорий. Например, если м ы разрабатывае м приложение, которое содержит обработку данных на естественном языке (Natural Language Processing — NLP), м еханиз м речевого воспроизведения текста (text-to-speech engine — TTS-engine) как часть интерфейса пользователя и формирование логических выводов как часть выборки данных, то параллелизм (естественный для NLP-компонента) должен быть представлен в виде задач внутри NLP-модуля или объекта, который отвечает за NLP-обработку. Аналогично параллелизм внутри компонента фор м ирования логических выводов следует представить в виде задач, составляю щ их модуль (объект или оболочку) выборки данных, отвечаю щ ий за выборку данных. Другими словами, мы идентифицируем PVM-задачи там, где они логически вписываются в работу, выполняемую программой, а не просто разбиваем работу программы на набор некоторых об щ их PVM-задач.

Соблюдение первичности логики и вторичности параллелизма имеет несколько последствий для С++-программ. Это означает, что мы могли бы порождать PVM-задачи из функции main или из функций, вызываемых из функции main (и даже из других функций). Мы могли бы порождать PVM-задачи из методов, прина д лежащих объектам. Место порождения задач зависит от требований к параллельности, выдвигаемых соответствую щ ей функцией, модулем или объектом. В об щ ем случае PVM-задачи можно разделить на две категории: SPMD (производная от SIMD) и MPMD (производная от MIMD). В модели SPMD все задачи будут выполнять одинаковый набор инструкций, но на различных наборах данных. В модели MPMD все задачи будут выполнять различные наборы инструкций на различных наборах данных. Но какую бы модель мы не использовали (SPMD или MPMD), создание задач должно происходить в соответствую щ

их областях программы. Некоторые возможные конфигурации для порождения PVM-задач показаны на рис. 6.4.

Реализация модели SPMD (SIMD) c помощью PVM-и С++-средств

Вариант 1 на рис. 6.4 представляет ситуацию, при которой функция main порождает от 1 до N задач, причем каждая задача выполняет один и тот же набор инструкций, но на различных наборах данных. Су щ ествует несколько вариантов реализации этого сценария. В листинге 6.1 показана функция main , которая вызывает функцию pvm_spawn.

// Листинг б.1. Вызов функции pvm_spawn из // функции main

int main(int argc, char *argv[]) {

int TaskId[10]; int TaskId2[5]; // 1-е порождение:

pvm_spawn(«set_combination»,NULL,0,"",10,TaskId);

// 2-е порождение:

pvm_spawn(«set_combination», argv, 0,"",5,TaskId2); //. . .

}

В листинге 6.1 при первом порождении создается 10 задач. Каждал задача будет выполнять один и тот же набор инструкций, содержа щ ихся в программе set_combination. При успешном выполнении функции pvm_spawn массив TaskId будет содержать идентификаторы PVM-задач. Если про г ра мм а в листин г еб.1 имеет идентификатор TaskIds, то она может использовать функции pvm_send( ) для отправки данных, под г отовленных д л я обработки каждой про г раммой. Это воз м ожно б л а г одаря то м у, что функция pvm_send содержит идентификатор задачи-получате л я.

Рис. 6.4. Некоторые возможные конфигурации для порождения PVM-задач

При второ м порождении (с м. листин г б.1) создается пять задач, но в это м случае каждой задаче с по м о щ ью пара м етра argv передается необходи м ал информация. Это — дополнительный способ передачи информации задачам при их запуске. Тем самы м сыновние задачи получают е щ е одну воз м ожность уникальны м образо м идентифицировать себя с по м о щ ью значений, получае м ых в пара м етре argv. В листин г е 6 .2, чтобы создать N задач, функция main несколько раз (вместо одно г о) обра щ ается к функции pvm_spawn .

// Листинг 6.2. Использование нескольких вызовов

// функции pvm_spawn из функции main

int main(int argc, char *argv[]) {

int Taskl; int Task2; int Task3; //.. .

pvm_spawn(«set_combination», NULL,1,«hostl»,l,&Taskl); pvm_spawn(«sec_combination»,argv,1,«host2»,1, &Task2); pvm_spawn(«set_combination»,argv++,l,«host3»,l,&Task3); //. . .

}

Подход к созданию задач, продемонстрированный в листин г е 6.2, можно использовать в том случае, ко г да нужно, чтобы задачи выполнялись на конкретных компьютерах. В этом состоит одно из достоинств PVM-среды. Ведь про г рамме ино г да стоит воспользоваться преимуществами некоторых конкретных ресурсов конкретно г о компьютера, например, специальным математическим спецпроцессором, процессором графическо г о устройства вывода или какими-то дру г ими возможностями. В листин г е 6.2 обратите внимание на то, что каждый компьютер выпол н яет один и тот же набор инструкций, но все они получили при этом разные ар г ументы командной строки. Вариант 2 (см. рис. 6.4) представляет сценарий, в котором функция main( ) не порождает PVM-задачи. В этом сценарии PVM-задачи ло г ически связаны с функцией funcB , и поэтому здесь именно функция funcB порождает PVM-задачи. Функциям main( ) и funcA( ) нет необходимости знать что-либо о PVM-задачах, поэтому им и не нужно иметь соответствую щ ий PVM-код. Вариант 3 (см. рис. 6.4) представл я ет сценарий, в котором функции main и дру г им функциям в про г рамме прису щ естественный параллелизм. В этом случае роль «дру г их» функций и г рает функция funcA . PVM-задачи, порождаемые функциями main и funcA , выполняют различный код. Несмотря на то что задачи, порожденные функцией main , выпол н яют идентичный код, и задачи, порожденные функцией funcA , выполняют идентичный код, эти два набора задач совершенно различны. Этот вариант иллюстрирует возможность C++-про г раммы использовать коллекции задач для о д новременно г о решения различных проблем. Ве д ь не су щ ествует причины, по которой на про г рамму бы нала г алось о г раничение решать в любой момент времени только о д ну проблему. Вариант 4 (см. рис. 6 .4) пре д ставляет случай, ко гд а параллелизм заключен внутри объекта, поэтому порождение PVM-задач реализует один из методов это г о объекта. Этот вариант показывает, что при необхо д имости параллелизм может исходить из класса, а не из «свободной» функции.

Поделиться:
Популярные книги

Отмороженный 8.0

Гарцевич Евгений Александрович
8. Отмороженный
Фантастика:
постапокалипсис
рпг
аниме
5.00
рейтинг книги
Отмороженный 8.0

Газлайтер. Том 14

Володин Григорий Григорьевич
14. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 14

Ермак. Телохранитель

Валериев Игорь
2. Ермак
Фантастика:
альтернативная история
7.00
рейтинг книги
Ермак. Телохранитель

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Сборник коротких эротических рассказов

Коллектив авторов
Любовные романы:
эро литература
love action
7.25
рейтинг книги
Сборник коротких эротических рассказов

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Свет Черной Звезды

Звездная Елена
6. Катриона
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Свет Черной Звезды

Кодекс Крови. Книга IV

Борзых М.
4. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга IV

Идеальный мир для Лекаря 22

Сапфир Олег
22. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 22

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Лолита

Набоков Владимир Владимирович
Проза:
классическая проза
современная проза
8.05
рейтинг книги
Лолита

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад