Пьезоэлектричество
Шрифт:
Наибольшее распространение получили пьезокварцевые резонаторы. Упругость кварца такова, что при размерах, исчисляемых миллиметрами и сантиметрами, собственные частоты кварцевых пластинок лежат в пределах от тысячи до многих миллионов колебаний в секунду. А как раз эти частоты широко применяются в одной из важнейших технических отраслей — в радиотехнике.
Благодаря высоким упругим свойствам кварцевая пластинка представляет собой весьма совершенную механическую колебательную систему, для которой характерны очень малые потери энергии. Такая система, если её привести в колебательное движение, успевает совершить сотни тысяч колебаний, прежде чем вся
Благодаря высокой химической и температурной устойчивости кварца собственная частота кварцевого резонатора исключительно постоянна. Если кварцевую пластинку нагреть или охладить на один градус, то её собственная частота изменится всего на несколько десятитысячных, а иногда даже стотысячных долей процента.
В современной радиотехнике предъявляются очень высокие требования к устойчивости или, как говорят чаще, к стабильности частоты электрических колебаний.
Такие требования были продиктованы самой жизнью.
Для каждой радиостанции отводится своя рабочая частота. Радиослушатель, настраивая приёмник на частоту какой-либо определённой станции, слушает только её передачу, так как вследствие резонанса приёмник воспринимает лишь те колебания, на частоту которых он настроен.
По мере развития радиовещания и связи количество действующих радиостанций всё более и более увеличивается. В эфире становится «тесно». Если стабильность частот недостаточно высока, радиостанции могут «наезжать» друг на друга, создавать взаимные помехи. При этом радиослушатель слышит одновременно передачи двух или нескольких станций, сопровождающиеся свистами и искажениями. Радиотехники стали изыскивать способы повышения стабильности. И наиболее эффективным из этих способов оказалась кварцевая стабилизация, то есть стабилизация с помощью кварцевых резонаторов.
Современная радиостанция представляет собой чрезвычайно сложное устройство. Однако в её работе много общего с работой обыкновенного часового механизма.
Возьмём часы. Положим, что пружина в них не заведена. В этом случае, качнув маятник, можно наблюдать постепенное уменьшение размаха его колебаний. Это затухание, как мы уже говорили, объясняется потерями энергии на трение в опорах и на сопротивление колебательному движению маятника со стороны окружающей среды.
Заведём пружину. Она стремится восстановить первоначальную форму. Сила упругости, стремящаяся раскрутить пружину, с помощью особого механизма передаётся маятнику и поддерживает его колебания. Поэтому часовой маятник колеблется до тех пор, пока пружина не раскрутится, и запас энергии, заключённый в ней, не уменьшится до известного предела.
Таким образом в часах происходит преобразование энергии, которая запасена заведённой пружиной, в энергию механических колебаний маятника.
Аналогичное явление имеет место и в радиопередатчике. Там происходит преобразование энергии постоянного тока, вырабатываемого источниками питания (аккумуляторами, динамомашинами и т. д.), в энергию электрических колебаний. Роль пружины играет здесь источник постоянного тока, а роль маятника — электрическая колебательная система, в качестве которой может использоваться пьезокварцевая пластинка.
Частота вырабатываемых, или, как принято говорить, генерируемых радиопередатчиком мощных электрических колебаний практически равна собственной частоте кварцевого
В этом и заключается принцип кварцевой стабилизации.
Другим эффективным способом уплотнения эфира явилось применение пьезокварцевых фильтров в радиоприёмных устройствах. По мере сближения рабочих частот радиопередающих станций выделить желаемую программу и отстроиться от помех со стороны соседних по частоте передатчиков становится всё труднее и труднее. Как раз для этой цели и предназначены кварцевые фильтры, которые пропускают токи определённой частоты и задерживают токи всех остальных частот. Простейшим фильтром служит электрическая колебательная система.
Чем меньше потери энергии в колебательной системе, тем больше размах колебаний при резонансе и тем лучше выделяются колебания резонансной частоты. Про такую колебательную систему говорят, что она обладает высокими резонансными свойствами.
Мы уже указывали, что наименьшие потери энергии по сравнению с любой другой механической или электрической колебательной системой имеет кварцевый резонатор. Следовательно, его резонансные свойства наиболее высоки, и он может выделить передачу станции, на частоту которой настроен, даже при наличии очень близких по частоте «соседей».
Устройство, содержащее кварцевые резонаторы и предназначенное для повышения «избирательности» радиоприёмника, называется кварцевым фильтром.
Такие фильтры были созданы и описаны советским инженером Я. И. Эфрусси в 1931 г. Небезынтересно отметить, что спустя три года в США появилось сообщение об «изобретении» кварцевого фильтра американцем Мэзоном. Между тем кварцевый фильтр Мэзона — это тот же фильтр Я. И. Эфрусси.
Кварцевые фильтры применяются не только в радиоприёмниках, но и в проводной связи (телефон, телеграф). Они позволяют вести по двум проводам десятки переговоров одновременно.
Таковы основные применения пьезоэлектрического эффекта. В заключение остановимся на том, как развивается и растёт пьезоэлектрическая техника, какие проблемы стоят перед ней.
Новое в пьезоэлектрической технике
Пьезоэлектрическая техника развилась в самостоятельную техническую отрасль в годы, предшествовавшие второй мировой войне. Этому во многом способствовал бурный рост радиотехники. Во время войны ежегодный выпуск кварцевых пластинок, предназначенных для работы в различных радиоприборах, исчислялся миллионами штук.
С каждым годом потребность в кварцевых пластинках продолжает расти. Неудивительно поэтому, что уже с первых своих шагов пьезоэлектрическая техника столкнулась с проблемой нехватки сырья.
Природные запасы кристаллов кварца ограничены. Добыча кварцевого сырья очень трудоёмка. Но дело не только в этом. Если внимательно рассмотреть кристалл кварца, то в его толще можно обнаружить множество дефектов. Особенно часты пузырьки, трещины, включения других минералов. Нередко кристалл состоит из нескольких сросшихся между собой частей с различно направленными координатными осями. Поэтому только незначительная часть объёма кварцевого кристалла пригодна для производства пьезоэлектрических пластинок. Так, например, в кристаллах высшего (уникального) сорта для изготовления пластинок может быть использовано лишь 20 % объёма. А в кристаллах самого низкого (третьего) сорта используется всего 1–2% объёма.