Пионеры атомного века (Великие исследователи от Максвелла до Гейзенберга)
Шрифт:
По Ньютону, мир вещей мог быть механически описан посредством указания четырех величин: времени, пространства, момента массы и силы. Время и пространство рассматривались при этом как "абсолютные": оторванно и независимо от вещей, их заполняющих, и от событий, в них происходящих.
Кроме того, время и пространство строго разграничивались между собой. Взаимосвязь и взаимное влияние устанавливались только между моментами масс и силами. Все естественные процессы представлялись закономерными перемещениями материальных точек в пространстве и времени.
Эта "механика
Самым неудовлетворительным разделом в системе классической физики, созданной Ньютоном, было учение о свете.
Ньютон, следуя логике своего учения, считал свет естественной вещью, состоящей из материальных точек. Но уже в его время, как заметил Эйнштейн, "назревал жгучий вопрос: что происходит с материальными точками, образующими свет, когда свет поглощается?". Так неизбежно пришли к различию между весомыми и невесомыми частицами - малоубедительное решение, которое не могло долго считаться исчерпывающим объяснением.
Неудобства для глубоко мыслящих физиков таило в себе также представление о "силах дальнодействия".
Магнетизм, электричество и гравитация изображались как силы, действующие в пустом пространстве и распространяющиеся с бесконечно большой скоростью. Такое толкование физических взаимодействий, представляющее их едва ли не как сверхъестественные силы, не соответствовало трезво реалистической механистической картине природы. Уже Ньютон искал выход, но не добился успеха.
Не было недостатка в попытках объяснить световые явления принципиально иным способом. Гениальный голландский физик Христиан Гюйгенс, старший современник Ньютона, пытался охватить природу света своей теорией световых волн. Он предположил, что свет существует в виде продольных колебаний, которые распространяются в веществе, состоящем из мелких частиц, во все стороны от источника возбуждения, подобно звуку в воздухе.
Во всяком случае, сторонники Гюйгенса тщетно старались противопоставить его волновое представление корпускулярной теории света, которая поддерживалась высоким авторитетом Ньютона; это особенно показательно как пример тормозящего влияния, которое может оказать в науке большой авторитет. Борьба между корпускулярной и волновой теориями позднее повторилась и при объяснении других видов излучения.
Волновая теория света смогла победить только после того, как английский врач и физик Томас Юнг и французский естествоиспытатель и инженер Огюстен Френель в первых десятилетиях XIX века придали ей иной облик.
Юнг и Френель исходили из того, что свет распространяется не в виде продольных колебаний,
Гипотетическая основа световых колебаний (механический носитель волн света) стала со времени Гюйгенса называться световым эфиром, или, короче, эфиром.
Поскольку свет представляли себе в виде продольных волн, можно было вообразить эфир как разреженный газ. Если же распространение света предполагалось в форме поперечных волн, тогда следовало эфир мыслить как твердое упругое тело. При весьма малой плотности он должен быть тверже, чем сталь и алмаз. Одновременно световому эфиру приписывали полнейшую проницаемость, с тем чтобы небесные тела могли двигаться сквозь него без помех, как они это и делали со всей очевидностью. Эфир должен был обладать инерционной массой, но не мог иметь гравитационной массы.
Все эти свойства не уживались между собой. Таким образом, эфир представлял собой весьма загадочное явление и был предметом постоянных забот механистического мировоззрения, ибо он упорно сопротивлялся любой попытке механического осмысления. Гипотеза эфира оказалась недостоверной в своей основе.
Радикальный обоснованный ответ на этот загадочный вопрос дал в начале XX столетия Эйнштейн, отказавшись при изложении законов электродинамики от эфира. Однако первый и важный шаг на пути к современной картине природы без эфира сделал еще Максвелл, создав электродинамическую теорию света, пошатнувшую традиционную механическую теорию.
У Максвелла было два предшественника, на исследования которых он опирался: Эрстед и Фарадей.
Ганс Христиан Эрстед, датский врач и естествоиспытатель, в первой половине XIX века был профессором физики в Копенгагене. В 1820 году, во время эксперимента, сопровождавшего лекцию, он впервые заметил магнитное действие электрических токов. Таким образом, он стал первооткрывателем электромагнетизма. Это открытие имело большое научное и техническое значение. Оно привело к изобретению электромагнитного телеграфа и в дальнейшем к созданию электромотора.
Другой физик, Майкл Фарадей, сын кузнеца и естествоиспытатель-самоучка, ставший профессором Королевского института в Лондоне, считается одним из самых изобретательных экспериментаторов в истории точных естественных наук. Максвелл исходил непосредственно из его опытов.
К достижениям Фарадея в области физической химии в числе прочих относятся обнаружение законов электролиза, исследование сжижения газов и открытие бензола, важного углеводородного соединения. Его наблюдения явлений, происходящих при достаточно высоком напряжении переменного тока на электродах в вакуумной трубке, создали предпосылку для работы с катодными лучами, сыгравшими столь важную роль в становлении современной физики.
Брачный сезон. Сирота
Любовные романы:
любовно-фантастические романы
рейтинг книги
Жизнь мальчишки (др. перевод)
Жизнь мальчишки
Фантастика:
ужасы и мистика
рейтинг книги
