По ту сторону кванта
Шрифт:
В стройной теории волновой оптики оставалась одна неувязка: луч света мы воспринимаем всё-таки как луч, а не как волну. Как объяснить такой факт с точки зрения волновой оптики? Задачу решил Огюстен Жан Френель, и его объяснение можно найти теперь в любом учебнике физики.
Оказывается, при интерференции все волны от источника света гасят друг друга, кроме тех, которые находятся внутри узкого канала толщиной в половину длины волны света. (Для видимого света толщина канала /2 3•10– 5 см.) Если мы пренебрежём толщиной «светового канала», то получим ту самую траекторию светового луча, к которой все мы привыкли в обычной жизни.
Известен даже способ её построения: сначала нужно
В 1834 году Уильям Роуан Гамильтон (1805–1865), знаменитый профессор астрономии в Дублинском университете, занимался непонятной для современников задачей. Он хотел доказать, что формальная аналогия между траекторией движения частицы и траекторией светового луча имеет строгий математический смысл.
Мы уже знаем: в физике понятию закона движения соответствуют формулы — уравнения движения. Для волн и частиц они совершенно различны: решая одни, мы вычисляем траекторию частицы, решая другие, находим форму и скорость фронта волны. Но мы также знаем, что в оптике можно нарисовать траекторию светового луча, зная движение фронта его волны.
Гамильтон доказал, что в механике можно сделать нечто противоположное: заменить траекторию частицы движением фронта некоторой волны. Или более точно: уравнения движения механики можно записать в таком виде, что они полностью совпадут с уравнениями геометрической оптики, которые описывают распространение луча света без учёта его волновых свойств. Тем самым Гамильтон доказал оптико-механическую аналогию: движение частицы по траектории можно представить как распространение луча света без учёта его волновых свойств.
ВОЛНОВАЯ МЕХАНИКА ШРЁДИНГЕРА
Эрвин Шрёдингер (1887–1961) в 1911 году окончил Венский университет, где были ещё живы традиции Доплера, Физо, Больцмана и весь дух классических времён физики: основательность при изучении явлений и неторопливый к ним интерес. В 1925 году это был уже немолодой профессор Цюрихского университета, сохранивший, однако, юношеское стремление понять самое главное в тогдашней физике: «Как устроен атом? И как в нём движутся электроны?»
В конце 1925 года в одной из статей Эйнштейна Шрёдингер прочёл несколько слов похвалы в адрес де Бройля и его гипотезы. Этих немногих сведений ему оказалось достаточно, чтобы поверить в гипотезу де Бройля о волнах материи и развить её до логического конца (что всегда трудно, и не только в науке).
Ход его рассуждений легко понять, по крайней мере, теперь, почти полвека спустя. Прежде всего, он вспомнил оптико-механическую аналогию Гамильтона. Он знал, что она доказана лишь в пределе геометрической оптики — тогда, когда можно пренебречь волновыми свойствами света. Шрёдингер пошёл дальше и предположил: оптико-механическая аналогия остаётся справедливой также и в случае волновой оптики. Это означает, что всегда
Как и всякое глубокое открытие, гипотеза Шрёдингера ниоткуда логически не следовала.
Но, как всякое открытие, логические следствия она имела.
Прежде всего, если Шрёдингер прав, то движение частиц должно обнаруживать волновые свойства в тех областях пространства, размеры которых сравнимы с длиной волны этих частиц. В большой степени это относится и к движению электрона в атоме: сравнив формулы де Бройля (=h/m•v) и Бора (m•v•r=h/2), легко усмотреть, что диаметр атома d = / примерно в три раза меньше, чем длина волны электрона . Но эта длина — единственная, которую мы вспоминаем, когда говорим о размерах электрона в атоме. Теперь становится очевидным, что представить его в атоме частицей невозможно, ибо тогда придётся допустить, что атом построен из таких частиц, которые больше его самого. Отсюда сразу, и немного неожиданно, следует уже известный нам из предыдущей главы постулат Гейзенберга: не существует понятия траектории электрона в атоме.
Действительно, не может нечто большее двигаться внутри чего-то меньшего, и притом ещё по какой-то траектории, тогда не существует и проблемы устойчивости атома, так как электродинамика запрещает электрону двигаться в атоме лишь по траектории и не отвечает за явления, которые происходят при других типах движений. Всё это означает, что в атоме электроны существуют не в виде частиц, а в виде некоторых волн, смысл которых мы поймём немного позже. А пока ясно только одно: какова бы ни была природа этих электронных волн, их движение должно подчиняться волновому уравнению. Шрёдингер нашёл это уравнение. Вот оно:
(d2)/(dx2) + [2•m/(h2)]•[E– U(x)] = 0
Для тех, кто видит его впервые, оно абсолютно непонятно и может возбудить лишь любопытство или чувство инстинктивного протеста, причём последнее без серьёзных оснований.
В самом деле, представленный на этой странице рисунок столь же непонятен, как и уравнение Шрёдингера, однако мы принимаем его без внутреннего сопротивления. Мы совсем успокоимся, узнав, что это просто герб города Парижа, в котором мы никогда не были и, быть может, никогда не побываем. Только самые дотошные станут допытываться, почему он выглядит именно так, а не иначе. Как и в уравнении Шрёдингера, в этом гербе каждая черта и каждый символ исполнены смысла. Вверху — королевские лилии, которые появились в геральдических знаках Франции уже в конце V века — после победы Хлодвига над гуннами у берегов реки Ли. (По преданию, воины Хлодвига, возвращаясь домой, украсили свои шлемы и щиты цветами белых лилий «ли-ли», по-русски «белый-белый»). Внизу герба — корабль, похожий очертаниями на Ситэ — остров посреди Сены, где в древности обитало племя паризиев, по имени которых назван Париж. А форма герба напоминает парус — в память об основном занятии древних обитателей Парижа. Как видите, понять герб несложно, однако только жителям города он по-настоящему близок.