Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Как и многих в то время, Луи де Бройля занимал всё тот же вопрос: «Почему атомы устойчивы? И почему на стационарных орбитах электрон не излучает?»

Первый постулат Бора выделял эти орбиты из набора всех мыслимых орбит квантовым условием, которое связывает радиус орбиты r, скорость v и массу m электрона с целым числом квантов действия h:

mvr=n•(h/2)

Де Бройль хотел найти разумные основания для этого условия, то есть стремился объяснить его с помощью других, более привычных понятий. (Или, как теперь принято говорить,

пытался понять его физический смысл.)

Когда ищут объяснение непонятным фактам, как правило, прибегают к аналогиям. Точно так же поступил и де Бройль в поисках выхода из тупика противоречивых представлений об атоме. Он догадался, что трудности эти сродни тем, которые возникли при попытках понять противоречивые свойства света.

Со светом дело запуталось окончательно в 1923 году, когда Артур Комптон поставил свой знаменитый опыт и доказал, что рассеяние рентгеновых лучей на электронах нисколько не похоже на рассеяние морских волн, зато в точности напоминает столкновение двух бильярдных шаров, один из которых — электрон с массой m, а другой — световой квант с энергией E=h. После опыта Комптона уже нельзя было сомневаться в том, что в природе реально существуют световые кванты, а их энергия E=h однозначно связанна с длиной световой волны =c/, которой эти кванты соответствуют. В 1926 году по предложению Дж. Льюиса их стали называть фотонами.

Ни де Бройль, ни его современники не могли объяснить, что означают слова: «Световые кванты соответствуют световой волне». Однако у них не было оснований подвергать сомнению эксперименты, из которых следовало, что в одних условиях световой луч ведёт себя как волна с длиной и частотой =c/, а в других — как поток частиц — фотонов — с энергией E=h и импульсом p=(h)/c

Вычисления

Года через три-четыре все поймут, что это явление — лишь частный случай корпускулярно-волнового дуализма в природе, но в то время де Бройлю пришлось находить верную дорогу ощупью.

Корпускулярно-волновой дуализм

ВОЛНЫ МАТЕРИИ

Де Бройль верил в единство природы, верил искренне и глубоко — как все великие учёные до него. Поэтому он не мог допустить, что луч света — нечто особенное и ни на что другое в природе не похожее. Де Бройль предположил: не только луч света, но и все тела в природе должны обладать и волновыми, и корпускулярными свойствами одновременно. Поэтому, кроме световых волн и частиц материи, в природе должны реально существовать и кванты света, и волны материи.

Такое простое и сильное утверждение нелегко высказать: для этого нужны смелость и вера. Ещё труднее его понять — на это способен лишь непредвзятый ум, привычный

к абстрактному мышлению. И это очень трудно представить — природа, доступная восприятию наших пяти чувств, не создала зримых образов, которые могли бы помочь нам в этих усилиях. В самом деле, при слове «частица» вам может прийти на память всё, что угодно, — песчинка, бильярдный шар, летящий камень, но вы никогда не вспомните морские волны или колеблющуюся струну. Для нормального человека это настолько противоречивые образы, что объединить их в один кажется противоестественным.

Всякий рассказ о рождении новой физической теории заведомо неточен даже в устах её создателя: такой рассказ, как правило, использует понятия, которых в момент создания теории не было. У ныне живущих физиков понятие «волна материи» вызывает в сознании некий сложный образ, который ни с чем привычным в окружающем нас мире сравнить нельзя. Образ этот складывается постепенно, при работе с формулами квантовой механики, при решении атомных задач, и рассказать о нём словами довольно трудно. Понятно, что использовать такой сложный и совершенный образ в 1922 году де Бройль не мог, и потому в его тогдашних рассуждениях мы встречаем некий заменитель: образ волны, которая возникает при колебаниях струны.

Хорошо известно, что при ударе по натянутой струне она начинает звучать, и звук этот зависит от длины струны. Механизм возникновения звука также хорошо известен: колебания струны передаются воздуху, и мы воспринимаем уже колебания воздуха, а не колебания струны, которые их породили. Однако между ними существует строгая связь. Например, если мы слышим ноту ля из первой октавы, то в этот момент струна колеблется с частотой =440 герц, то есть 440 колебаний в секунду. А поскольку скорость звука в воздухе равна v = 334 м/сек, то длина этих звуковых волн равна

= v/ = 76 см.

Волны материи

При колебаниях струны мы слышим основной тон — такое колебание, когда вся струна колеблется как целое. Однако при её возбуждении возникают и дополнительные колебания — обертоны. Картина колебаний усложняется, на струне появляются «узлы», то есть такие точки, которые остаются неподвижными в процессе колебания. Но всегда строго соблюдается одно условие: на длине струны умещается целое число полуволн /2 — Для основного тона на длине струны укладывается ровно половина волны /2. Для первого обертона — две половины волны, между которыми расположен Неподвижный «узел», и так далее.

Всё это де Бройль вспомнил, представив себе колеблющуюся струну. Дальнейшее — сравнительно просто.

Свернём наши струны в кольцо и представим себе, что это орбиты электрона в атоме. Теперь заменим движение электрона по ним колебаниями волн, которые «соответствуют электрону», — де Бройль был убеждён, что это разумно. Легко видеть, что при сворачивании струн в кольцо на них появляется дополнительный узел, то есть основной тон растянутой струны превращается в первый обертон кольцевой струны. А это, в свою очередь, означает, что на кольцевой струне может уместиться самое меньшее целая волна , а не половина волны /2 (как прежде на плоской струне). Таким образом, движение электрона будет устойчивым тогда — и только тогда! — когда на длине орбиты укладывается целое число n «волн электрона» . Отсюда следует простое условие:

Поделиться:
Популярные книги

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

(Не) моя ДНК

Рымарь Диана
6. Сапфировые истории
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
(Не) моя ДНК

Измена. Избранная для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
3.40
рейтинг книги
Измена. Избранная для дракона

Блуждающие огни

Панченко Андрей Алексеевич
1. Блуждающие огни
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
Блуждающие огни

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Ваше Сиятельство 11

Моури Эрли
11. Ваше Сиятельство
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Ваше Сиятельство 11

Мама из другого мира. Делу - время, забавам - час

Рыжая Ехидна
2. Королевский приют имени графа Тадеуса Оберона
Фантастика:
фэнтези
8.83
рейтинг книги
Мама из другого мира. Делу - время, забавам - час

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Пятничная я. Умереть, чтобы жить

Это Хорошо
Фантастика:
детективная фантастика
6.25
рейтинг книги
Пятничная я. Умереть, чтобы жить

Барон Дубов 2

Карелин Сергей Витальевич
2. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 2

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Контролер

Семин Никита
3. Переломный век
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Контролер

Ох уж этот Мин Джин Хо 4

Кронос Александр
4. Мин Джин Хо
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 4

Измена. Вторая жена мужа

Караева Алсу
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Вторая жена мужа