Чтение онлайн

на главную - закладки

Жанры

Почему мы не проваливаемся сквозь пол
Шрифт:

Благодаря сложному и совершенному биологическому механизму наши мышцы непрерывно подстраиваются под внешнюю нагрузку, что позволяет удерживать кружку в вытянутой руке. Однако сохранение биологического напряжения мышц требует непрерывного расходования энергии (подобно тому как упершийся в стену автомобиль, оборудованный гидравлической передачей, продолжает сжигать бензин в своем двигателе, оказывая давление на стену, но ни машина, ни стена при этом не движутся). Расход энергии приводит к усталости мышц руки, и, чтобы снять с них нагрузку, я рано или поздно должен буду выпить пиво.

В отличие от неодушевленных предметов человек всегда, даже когда стоит неподвижно, производит направленные, хотя, возможно, и неосознанные, подстроечные операции в мышцах тела. Со временем он устает и, если обморок или смерть

прерывают мышечные процессы, падает. В неодушевленных телах подобные биологические процессы отсутствуют. Конструкционные материалы пассивны, так что они не "устают" в обычном смысле этого слова. Прежде чем начать сопротивляться внешним нагрузкам, в них должны возникнуть какие-то смещения, то есть, чтобы оказать какое-либо сопротивление, они должны в большей или меньшей степени поддаться нагрузке. Под смещением мы понимаем не перемещение тела как целого, без изменения его формы, а именно геометрические искажения самого тела, то есть тело в целом или отдельные его части становятся короче или длиннее вследствие растяжения или сжатия внутри самого тела.

В природе не существует и не может существовать абсолютно жесткого материала. Все тела в той или иной мере обладают податливостью. Если вы взбираетесь на дерево, то ветки прогибаются под вами, и это сразу становится заметным. Однако, когда вы идете по мосту, его прогиб настолько мал что вы его не ощущаете. Но как смещения ветвей, так и отклонения моста могут быть охарактеризованы количественно. Пока смещения, вызванные внешними нагрузками, не слишком велики и не мешают конструкции выполнять свои задачи, их нельзя считать ошибками проекта, они определяют как бы врожденные, обязательные характеристики конструкции. (Ниже мы дадим им более подробное определение.)

Между прочим, вспомните, что, летая самолетом, вы, быть может, замечали, как смещаются вверх-вниз кончики его крыла. Конструктор, проектируя крыло, наделил его такими свойствами. Вероятно, вам уже ясно, что смещения, будь они малыми или большими, создают силы сопротивления. Эти силы определяют жесткость твердого тела, его способность сопротивляться внешним нагрузкам. Другими словами, в твердом теле возникают именно такие смещения, которые как раз достаточны, чтобы уравновесить приложенные внешние нагрузки. Это происходит совершенно автоматически.

Как же возникают эти силы? Дело в том, что в любом теле атомы химически связаны между собой (Приложение I). Эти связи условно можно представить в виде пружинок, хотя, конечно, ничего "твердого" в обычном вульгарном смысле этого слова в промежутках между атомами не существует (рис. 1). Те же силы, которые делают тело твердым, определяют и его химические свойства. Разрушение химических связей освобождает энергию пороха и бензина, те же связи делают резину и сталь упругими и прочными.

Рис. 1. Наглядная модель химических связей в твердом теле

Когда твердое тело полностью свободно от механических нагрузок (что бывает, строго говоря, очень редко), химические связи, или пружины в нашей модели, находятся в нейтральном положении (рис. 1, а). Любая попытка сблизить атомы (это мы называем сжатием) или оттянуть их друг от друга (что обычно называется растяжением) сопровождается небольшим укорочением (рис. 1, б) или удлинением (рис. 1, в) межатомных пружин во всем объеме материала. При этом ядра атомов считаются жесткими, кроме того, в твердом теле атомы обычно не обмениваются местами, по крайней мере при умеренных, или "безопасных", нагрузках. Таким образом, податливость твердого тела определяется межатомными связями. Жесткость этих связей может изменяться в широких пределах, но для большинства веществ она намного выше, чем у тех металлических пружин, с которыми мы встречаемся в повседневной жизни. Очень часто величины межатомных сил весьма и весьма велики. Этого и следовало ожидать, если вспомнить о силах, которые могут быть получены при разрыве химических связей горючих или взрывчатых веществ.

Хотя абсолютно жестких тел, то

есть таких, которые под действием внешних сил совершенно не изменяют своей формы, в природе не бывает, смещения во многих предметах часто оказываются очень малыми. Например, если я наступлю на обычный строительный кирпич, то его высота уменьшится примерно на 1/20000 см. А два любых соседних атома в кирпиче станут ближе один к другому на расстояние ~1/500000A (2·10-14 см). Величина эта невероятно мала, но она соответствует совершенно реальным перемещениям атомов. Конечно, в крупных конструкциях перемещения элементов не всегда малы. Канаты, на которых висит мост через залив Форт (Шотландия), все время растянуты примерно на 0,1%, что при их общей длине почти 3 км составляет около 3 м. В этом случае атомы железа, расстояние между которыми в не нагруженном состоянии около 2 А, удаляются на величину ~2/1000 А.

Тот факт, что расстояние между атомами действительно изменяется под нагрузкой, был многократно про верен путем постановки самых различных экспериментов. Наиболее наглядные результаты дает стандартный метод измерения межатомных расстояний по отклонению пучка рентгеновских лучей при прохождении его через кристалл, основанный на явлении дифракции. Более чем полувековая практика позволила довести этот метод до весьма высокой точности. Опыты показали, что смещения атомов в металлах, например, строго пропорциональны величине, на которую удлиняется (или укорачивается) весь кусок металла. В этих экспериментах наблюдались изменения межатомных расстояний примерно до 1%. На рис. 2 показаны результаты измерений на мягкой стали, в которой максимальные смещения атомов были около 0,5%.

Рис. 2. Сравнение напряжений, установленных экспериментально с помощью дифракции рентгеновских лучей (методом двух экспозиций), с расчетными напряжениями, вычисленными по кривизне изогнутой балки (отожженная малоуглеродистая сталь). Белый кружок - данные экспериментатора A, черный - экспериментаторов B и C.

(обратно)

Напряжения и деформации, что это?

Все эти рассуждения подводят нас к понятиям "напряжение" и "деформация". Когда мы говорили о силах, то имели в виду полные величины сил, действующих на тело. Такой силой мог быть любой груз. Когда мы говорили о смещении под нагрузкой, то имели в виду полные смещения независимо от размеров объекта, будь он большим или малым. Однако все это не позволяет нам сравнивать большой объект под большой нагрузкой с малым объектом под меньшей нагрузкой. Например, если из стали одного сорта изготовить крошечную деталь пишущей машинки и корпус воздушного лайнера, то какие характеристики этого материала, работающего в столь различных условиях, можно было бы сравнивать? Без ответа на этот вопрос мы не можем продолжать разговор о материалах и конструкциях. Нужные нам величины называются напряжением и деформацией. Напряжение - это нагрузка, отнесенная к единице площади, то есть = P/F, где - напряжение, Р– нагрузка, F– площадь. Приведенная формула также повседневна, как и привычные всем выражения "килограмм масла стоит 3 рубля" или "машина проходит 10 километров на одном литре бензина". Следовательно, если мы снова возьмем кирпич с поперечным сечением 25x12 см, то есть площадью сечения 300 см2, и я наступлю на него, приложив к нему силу своего веса 75 кг, то сжимающее напряжение, которое я вызову в кирпиче, будет = P/F = 75/300 = 0,25 кг/см2

Точно так же, если кирпичная опора моста имеет поперечное сечение 10x5 м и на мост въезжает локомотив весом в 125 т, то сжимающее напряжение в кирпичной кладке будет около 0,25 кг/см2. Теперь мы с полной определенностью можем сказать, что в обоих случаях напряжения в кирпиче примерно одинаковы, и если одна конструкция не разрушается, то, по-видимому, не разрушится и другая. Что касается кирпичей, то их молекулы поджимаются одна к другой одинаковыми силами, хотя вес локомотива и вес моего тела совершенно различны. Очевидно, что инженера должны интересовать именно такие величины.

Поделиться:
Популярные книги

Кадры решают все

Злотников Роман Валерьевич
2. Элита элит
Фантастика:
боевая фантастика
попаданцы
альтернативная история
8.09
рейтинг книги
Кадры решают все

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Прорвемся, опера! Книга 2

Киров Никита
2. Опер
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Прорвемся, опера! Книга 2

Ученик. Книга 4

Первухин Андрей Евгеньевич
4. Ученик
Фантастика:
фэнтези
5.67
рейтинг книги
Ученик. Книга 4

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Кодекс Охотника. Книга XIX

Винокуров Юрий
19. Кодекс Охотника
Фантастика:
фэнтези
5.00
рейтинг книги
Кодекс Охотника. Книга XIX

Господин следователь. Книга пятая

Шалашов Евгений Васильевич
5. Господин следователь
Детективы:
исторические детективы
5.00
рейтинг книги
Господин следователь. Книга пятая

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Сын Тишайшего 3

Яманов Александр
3. Царь Федя
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Сын Тишайшего 3

Хозяйка старой пасеки

Шнейдер Наталья
Фантастика:
попаданцы
фэнтези
7.50
рейтинг книги
Хозяйка старой пасеки

Архонт

Прокофьев Роман Юрьевич
5. Стеллар
Фантастика:
боевая фантастика
рпг
7.80
рейтинг книги
Архонт

Надуй щеки! Том 6

Вишневский Сергей Викторович
6. Чеболь за партой
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Надуй щеки! Том 6

Крутой маршрут

Гинзбург Евгения
Документальная литература:
биографии и мемуары
8.12
рейтинг книги
Крутой маршрут

Барон Дубов 5

Карелин Сергей Витальевич
5. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов 5