Поиски истины
Шрифт:
В вакууме у верхнего края ямы непрерывно рождаются и исчезают всевозможные частицы. Для того чтобы виртуальная частица стала реальной, ей согласно формуле Эйнштейна необходимо передать энергию, равную тс2, где т - масса частицы, ас - скорость света. Энергия, передаваемая полем частице при ее падении на дно ямы, может пойти либо на увеличение кинетической энергии уже родившейся частицы, либо на то, чтобы превратить виртуальную частицу у верхнего края ямы в реальную частицу, находящуюся на дне.
Что произойдет, если глубина энергетической ямы превысит
210
Критические условия достигаются тем легче, чем меньше масса рождающихся частиц.
Наименьшую массу среди заряженных частиц имеют электроны. Однако они, как и все другие частицы со спином 1/2, подчиняются «запрету Паули» и не могут накапливаться в большом количестве - в каждом состоянии может находиться только один электрон.
Гораздо более существенная перестройка вакуума должна происходить в таких полях, в которых возможно рождение частиц с целым спином. Тогда нет запрета Паули, и частицы могут накапливаться в состоянии наинизшей энергии в любом количестве. Предел накапливания определяется только отталкиванием частиц друг от друга. Наименьшую массу среди частиц такого типа имеют пи-мезоны, поэтому наиболее интересно исследование свойств пионного поля и выяснение условий, при которых возникает пионная неустойчивость вакуума (неустойчивость по отношению к образованию пионного поля).
Такая неустойчивость может возникнуть в достаточно сильном электрическом поле. Вблизи ядра с числом протонов Z пионная неустойчивость возникает, как показывает расчет, при значениях Z›1500.
Ядра с таким зарядом, если не принимать во внимание возможность перестройки вакуума, были бы неустойчивы из-за громадного кулоновского отталкивания протонов. Однако расчет энергии, выигрываемой от перестройки вакуума, показывает, что этот выигрыш может превысить потерю энергии из-за кулоновского отталкивания. В результате такие «сверхзаряженные» ядра могут оказаться устойчивыми, и не исключено, что они возникли в процессе эволюции Вселенной. В этом случае следует пытаться искать их в космических лучах.
Наиболее интересна пионная неустойчивость вакуума, которая проявляется в достаточно плотной нуклон-ной среде (в среде, состоящей из нейтронов и протонов). Поскольку пи-мезоны сильно взаимодействуют с нуклонами, такая среда создает ту потенциальную яму, в которой при достаточной плотности возникает неустойчивость вакуума. Как мы увидим, неустойчивость пионного поля в нуклонной среде приводит к большому количеству важных физических следствий и может быть проверена экспериментально. Обсудим
Пиониая конденсация
Эффективная потенциальная яма для пионов, создаваемая нуклонным веществом с плотностью п, имеет глубину
U = nA,
где А - амплитуда рассеяния пиона на нуклоне (квадрат этой величины определяет сечение рассеяния). Величина А играет роль глубины ямы, создаваемой одним нуклоном. Неустойчивость вакуума относительно рождения пионов наступит при увеличении плотности, когда глубина ямы сделается больше, чем энергия покоя пиона:
U = nА \gg m_\pi с2.
Критическая плотность, при которой начинается перестройка вакуума:
n_c=(m_\pi с2)/A.
В действительности все обстоит не так просто. Во-первых, амплитуда рассеяния мала при малом импульсе (напомним, что количество движения - импульс - масса X скорость) пионов. И неустойчивость возникает не для покоящихся пионов, а для пионов с импульсом, для которого амплитуда рассеяния максимальна. Этот импульс порядка m_\pi с. Кроме того, при большой плотности нуклонов в этой простой формуле появляются дополнительные слагаемые, которые пока можно найти только приближенно. Поэтому значение критической плотности известно не очень точно: можно только сказать, что она близка к равновесной плотности ядерного вещества (к плотности атомных ядер). Мы будем обозначать эту плотность n0. Таким образом n_c\simeq=n_0.
Итак, в нуклонной среде с плотностью, большей, чем nс возникает пионное поле. Когда оно делается достаточно большим, отталкивание между пионами уменьшает яму и процесс останавливается. Когда плотность нук-лонного вещества заметно превышает критическое значение, глубина ямы делается больше энергии покоя, - при конденсации выигрывается энергия. Энергия Е_\pi , которая освобождается при конденсации, пропорциональна квадрату превышения плотности над критическим значением:
Е_\pi =\alpha(n-nс )2.
Это явление называется «пионной конденсацией». Пионное поле, возникающее при конденсации, называют «конденсатом».
Пионная конденсация приводит к возможному существованию сверхплотных ядер, о которых мы говорили во вступлении, а также ко многим другим физическим следствиям.
Пока такие ядра не обнаружены. Их поисками заняты физические лаборатории многих стран. Теоретическое исследование пионной конденсации и ее следствий началось в 1971 году с работы автора этой книги и продолжается до сих пор во многих научных центрах.
Неустойчивость ядерного вещества при большой плотности
Самое важное следствие пионной конденсации - неустойчивость нуклонного вещества, которая может возникнуть в результате конденсации. Поясним, в чем физическая причина этой неустойчивости. Пусть критическая плотность нуклонов nс , соответствующая пионной конденсации, превышает равновесную плотность n0 ядерного вещества. Покуда нет конденсации, энергия ядерного вещества возрастает с увеличением плотности по сравнению с равновесным значением.