Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Оценим порядок длины волны нулевых гравитационных колебаний, при которой геометрия делается совсем непохожей на евклидову. Степень отклонения \zeta геометрии от евклидовой в гравитационном поле определяется отношением гравитационного потенциала \varphi и квадрата с: \zeta = \varphi /с2. Когда \zeta \ll 1 геометрия близка к евкли-

довой; при \zeta ~1 всякое сходство исчезает. Энергия колебания масштаба l равна Е = h \omega ~hc/l (c/l -порядок частоты колебаний). Гравитационный потенциал,

создаваемый массой m на такой длине есть \varphi =Gm/l

где G - постоянная всемирного тяготения. Вместо m следует подставить массу, которой согласно формуле

Эйнштейна соответствует энергия Е (m = Е/с2). Получаем \varphi =G E/(lс2)=G h/(cl2) Разделив это выражение на с2, получим величину \zeta. Приравняв \zeta=1, найдем ту длину, на которой полностью искажается евклидова геометрия:

P=sqrt(Gh/c)/c.

Эта величина называется «планковской длиной». Подставляя значения с, G, h (в системе CGS с = 31010; G = 6,710-8; h=10-27), получим: Р =210-33 см.

Несмотря на такую малость, эта длина, по-видимому, сыграет важную роль в будущей теории, которая объединит гравитацию со всеми остальными взаимодействиями - электромагнитным, сильным и слабым.

У вакуума есть еще одно свойство: в сильных полях виртуальные частицы превращаются в реальные - вакуум перестраивается. Но об этом в следующем разделе.

НЕУСТОЙЧИВОСТЬ ВАКУУМА И НЕОБЫЧНЫЕ СОСТОЯНИЯ ЯДЕРНОГО ВЕЩЕСТВА

Лучший жребий физической теории - послужить основой для более общей теории, оставаясь в ней предельным случаем.

А. Эйнштейн

Явления, о которых пойдет речь, еще не обнаружены на опыте. Они пока существуют только на бумаге

как результат теоретических расчетов и оценок. Но оценки эти достаточно правдоподобны, а явления настолько важны, что прилагаются серьезные усилия, чтобы подтвердить или опровергнуть предсказания теории.

Согласно этой теории ядерное вещество, то есть вещество, состоящее из нейтронов и протонов, может находиться в различных состояниях - в обычном, в котором оно находится в атомных ядрах, и в необычном, более плотном состоянии (а может быть, и в нескольких более плотных состояниях). Это могло бы означать, что наряду с обычными ядрами существуют аномальные ядра с другими свойствами (с другой плотностью, другим отношением заряда к массе, с другой энергией связи нейтронов и протонов).

Это явление тесно связано с другим, как часто бывает в теоретической физике, на первый взгляд очень далеким, - с перестройкой вакуума в сильных полях.

В сильных полях вакуум перестраивается - в нем образуются частицы, или, точнее, появляется поле частиц определенного типа, в зависимости от характера внешнего поля. Такая перестройка подобна фазовому переходу в обычном веществе, например переходу металла в сверхпроводящее состояние. Поэтому, прежде чем изучать такой сложный объект, как вакуум, полезно вспомнить, что такое обычные фазовые переходы.

Фазовые переходы

Как известно, одно и то же вещество в зависимости от внешних условий (температуры, давления, магнитного или электрического поля, приложенного к телу, и так далее), может находиться в разных состояниях, разных «фазах». Соответствующий переход называется «фазовым переходом». Например, лед (твердая фаза воды) при температуре ниже нуля, но при достаточном давлении плавится - это означает, что вода из твердой фазы переходит в жидкую. Помимо переходов из твердого в жидкое или из жидкого в газообразное состояние, существует множество самых различных фазовых переходов. Это,

например, переходы металлов из нормального состояния в сверхпроводящее, из ферромагнитного - в парамагнитное; переходы в твердых телах, связанные с изменением симметрии кристаллической решетки; переход гелия из нормального в сверхтекучее состоя

208

ние и так далее. И все это множество явлений описывается единой теорией, основы которой были заложены Л. Д. Ландау в 1937 году. С тех пор теория фазовых переходов обогатилась многими новыми идеями и превратилась в одну из интереснейших областей теоретической физики с большим количеством практических применений.

Что же отличает одну фазу от другой и что объединяет все эти разнородные явления? Оказывается, всегда существует некая величина, которая называется «параметром порядка» и которая равна нулю в одной фазе и отлична от нуля в другой. В случае перехода из твердого состояния в жидкое в качестве параметра можно взять отношение числа атомов, расположенных в правильном порядке (в кристаллической решетке), к полному числу атомов. Ниже точки плавления это отношение равно единице, выше - нулю. При этом переходе параметр порядка изменяется скачком.

В таких случаях переход называется «переходом 1-го рода».

Рассмотрим переход из ферромагнитного состояния в парамагнитное. Ферромагнитное состояние - такое, в котором находится вещество в магните. При этом магнитные моменты отдельных атомов имеют преимущественное направление - большинство магнитных моментов расположено вдоль оси магнита. По мере нагревания магнита тепловое движение все больше и больше разбрасывает магнитные моменты по разным направлениям, и при некоторой температуре средний магнитный момент атомов вдоль оси магнита обращается в нуль. Значит, вещество перешло в парамагнитное состояние, в котором магнитные моменты атомов ориентированы беспорядочно. При переходе из ферромагнитного состояния в парамагнитное роль параметра порядка играет среднее значение проекции магнитного момента на ось намагничивания. В точке перехода эта величина обращается в нуль и остается нулем после перехода в парамагнитное состояние.

Таким образом, параметр порядка не испытывает скачка в точке фазового перехода. Такой переход называется «переходом 2-го рода».

Как мы увидим, перестройка вакуума во внешних полях тоже представляет собой фазовый переход 2-го рода. Роль параметра порядка играет величина конден-сатного поля, которое возникает после перестройки.

Фазовые переходы вакуума

Как изменяется вакуум в присутствии внешнего поля, то есть поля, создаваемого внесенными в вакуум частицами? Небольшая перестройка вакуума происходит даже в слабых полях. Нас будет интересовать перестройка вакуума, внезапно наступающая при достижении некоторого критического значения внешнего поля, перестройка, вызываемая возможностью самопроизвольного рождения частиц определенного типа.

Как мы уже знаем, в вакууме непрерывно рождаются и исчезают всевозможные частицы, он заполнен такими виртуальными частицами.

Зададим себе вопрос: что случится с виртуальными частицами, если в вакууме появится сильное поле? Не сделаются ли они реальными?

Допустим, что в некоторой области пространства создано сильное поле - электрическое, гравитационное или ядерное (поле, создаваемое нуклонами). Пусть поле имеет вид потенциальной ямы. Самый простой пример потенциальной ямы - это впадина на поверхности Земли. Когда частица попадает извне в потенциальную яму, ее кинетическая энергия увеличивается, как у камня, скатывающегося с горы.

Поделиться:
Популярные книги

Матабар IV

Клеванский Кирилл Сергеевич
4. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар IV

Товарищ "Чума"

lanpirot
1. Товарищ "Чума"
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Товарищ Чума

Как я строил магическую империю 2

Зубов Константин
2. Как я строил магическую империю
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю 2

Бестужев. Служба Государевой Безопасности. Книга вторая

Измайлов Сергей
2. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга вторая

Клан

Русич Антон
2. Долгий путь домой
Фантастика:
боевая фантастика
космическая фантастика
5.60
рейтинг книги
Клан

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Кодекс Крови. Книга I

Борзых М.
1. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга I

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Начальник милиции 2

Дамиров Рафаэль
2. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции 2

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Часовое имя

Щерба Наталья Васильевна
4. Часодеи
Детские:
детская фантастика
9.56
рейтинг книги
Часовое имя

Искра Силы

Шабынин Александр
1. Мир Бессмертных
Фантастика:
городское фэнтези
историческое фэнтези
сказочная фантастика
фэнтези
эпическая фантастика
5.00
рейтинг книги
Искра Силы