Чтение онлайн

на главную - закладки

Жанры

Шрифт:

На этом история не заканчивается, и всю третью часть нашей книги мы посвятим более подробному обсуждению затронутого круга проблем, а пока ограничимся несколькими замечаниями. В классической (и, как мы увидим в дальнейшем, квантовой) механике все определяется в терминах начальных состояний и законов движения. Каким же образом в описание природы входит вероятность? Обычно, отвечая на этот вопрос, ссылаются на то, что мы не знаем с абсолютной точностью динамическое состояние системы. Это — субъективистская интерпретация энтропии. Такая интерпретация была бы приемлема, если бы необратимые процессы мы рассматривали лишь как досадные помехи, соответствующие трению, или, более общо, как потери при функционировании тепловых машин. Но ныне ситуация изменилась. Как мы увидим, необратимым процессам отводится важнейшая конструктивная роль: так, без них была

бы невозможна жизнь. Все это делает субъективистскую интерпретацию весьма спорной. В какой мере допустимо считать, что мы сами являемся результатом неполноты собственного знания, следствием того, что нашему наблюдению доступны лишь макроскопические состояния?

И в термодинамике, и в ее вероятностной интерпретации возникает асимметрия во времени: энтропия возрастает в направлении будущего, но не прошлого. Если мы рассматриваем динамические уравнения, инвариантные относительно обращения времени, то такая асимметрия представляется невозможной. Как мы увидим в дальнейшем, второе начало термодинамики представляет собой принцип отбора, совместимый с динамикой, но не выводимый из нее. Второе начало ограничивает возможные начальные условия, доступные для динамической системы. Следовательно, второе начало термодинамики знаменует радикальный отход от механистического мира классической или квантовой механики. Но вернемся к работам Больцмана.

До сих пор мы рассматривали изолированные системы, в которых число частиц и полная энергия заданы граничными условиями. Но объяснение Больцмана допускает обобщение на открытые системы, взаимодействующие с окружающей средой. В замкнутой системе, определяемой граничными условиями так, что ее температура Т поддерживается постоянной за счет теплообмена с окружающей средой, равновесие соответствует не максимуму энтропии, а минимуму аналогичной функции, получившей название свободной энергии: F=E—TS, где Е — энергия системы, Т — ее температура по так называемой шкале Кельвина (точка замерзания воды соответствует 273 °К, а точка кипения 373 °К).

Соотношение F=E—TS означает, что равновесие есть результат конкуренции между энергией и энтропией, а температура выступает в роли множителя, определяющего относительный вес этих двух факторов. При низких температурах перевес на стороне энергии, и мы наблюдаем образование таких упорядоченных (с малой энтропией) и низкоэнергетических структур, как кристаллы. Каждая молекула внутри таких структур взаимодействует со своими соседями, и их кинетическая энергия мала по сравнению с потенциальной энергией, обусловленной взаимодействиями между соседними молекулами. Каждая молекула как бы скована взаимодействием со своими соседями. При высоких температурах доминирует энтропия и в системе устанавливается молекулярный хаос. Важность относительного движения возрастает, и регулярность в строении кристалла нарушается: по мере увеличения температуры вещество переходит сначала в жидкое, а затем в газообразное состояние.

Энтропия S изолированной системы и свободная энергия системы при заданной температуре являются примерами так называемых термодинамических потенциалов. Экстремумы (т. е. максимумы и минимумы) термодинамических потенциалов, в том числе S и F, задают состояния-аттракторы, к которым самопроизвольно стремится система, если ее граничные условия соответствуют определениям потенциалов.

Принцип порядка Больцмана может быть использован и при исследовании сосуществования структур (например, жидкой и твердой фаз) или равновесия между кристаллизовавшимся продуктом и тем же продуктом в растворе. Не следует, однако, забывать о том, что равновесные структуры определены на молекулярном уровне. Взаимодействие между молекулами на расстоянии порядка 10– 8 см, т. е. порядка диаметра атомов в молекулах, делает устойчивой структуру кристаллов и наделяет их макроскопическими свойствами. С другой стороны, размеры кристалла не являются внутренним свойством структуры. Они зависят от того, какое количество вещества находится в кристаллической фазе при равновесии.

7. Карно и Дарвин

Равновесная термодинамика позволяет удовлетворительно объяснить огромное

число физико-химических явлений. Тем не менее уместно спросить, охватывает ли понятие равновесной структуры все те различные структуры, с которыми мы сталкиваемся в природе. Ясно, что ответ на подобный вопрос может быть только отрицательным.

Равновесные структуры можно рассматривать как результат статистической компенсации активности микроскопических элементов (молекул, атомов). На глобальном уровне равновесные структуры, по определению, инертны. По той же причине они «бессмертны»: коль скоро равновесная структура образовалась, ее можно изолировать и поддерживать бесконечно долго без дальнейшего взаимодействия с окружающей средой. Но при изучении биологической клетки или города мы сталкиваемся с совершенно другой ситуацией: эти системы не только открыты, но и существуют только потому, что они открыты. Их питают потоки вещества и энергии, которые поступают из внешнего мира. Мы можем изолировать кристалл, но если города и клетки отрезать от окружающей среды, они погибнут. Последние являются неотъемлемой составной частью того мира, из которого они черпают необходимые для себя «питательные вещества», и их невозможно изолировать от потоков, которые они безостановочно перерабатывают.

Но не только живая природа глубоко чужда моделям термодинамического равновесия. Обмен веществом и энергией с окружающей средой происходит также во многих гидродинамических явлениях и в химических реакциях.

Трудно понять, каким образом принцип порядка Больцмана может быть применен во всех таких случаях. То, что с течением времени система становится более однородной, в терминах комплексов интерпретируется вполне естественно: в состоянии однородности, когда забыты «различия», созданные начальными условиями, число комплексов максимально. Но решительно невозможно понять, оставаясь в рамках такого рода представлений, спонтанное возникновение конвекции. Конвективное течение требует когерентности, согласованного поведения огромного числа молекул. Это — противоположность хаоса, привилегированное состояние, которому может соответствовать лишь сравнительно небольшое число комплексов. По терминологии Больцмана, конвективное течение — пример «невероятного» состояния. Но если конвекцию надлежит считать «чудом», то что в таком случае говорить о жизни в ее многочисленных проявлениях и в высшей степеней специфических особенностях даже в случае простейших организмов?

Вопрос о том, в какой мере равновесные модели соответствуют действительности, допускает обращение. Чтобы возникло равновесие, систему необходимо «защитить», «заэкранировать» от потоков, образующих в своей совокупности природу. Система должна быть «запаяна» в консервную банку или помещена в стеклянный сосуд, как гомункулус в гётевском «Фаусте», обращающийся к создавшему его алхимику со следующими словами:

Прижми к груди свое дитя!

Но — бережно, чтоб не разбилась склянка.

Вот неизбежная вещей изнанка:

Природному Вселенная тесна,

Искусственному же замкнутость нужна![140]

В привычном нам мире равновесие — состояние редкое и весьма хрупкое. Даже эволюция к состоянию равновесия возможна в мире, очень похожем на наш и находящемся на достаточном удалении от Солнца, чтобы имело смысл говорить по крайней мере о частичной изоляции системы (при температуре Солнца систему вряд ли разумно считать заключенной в «консервную банку»), но в то же время таком, в котором правилом является отсутствие равновесия, «тепличном» мире, где равновесие и неравновесие сосуществуют.

Однако на протяжении довольно длительного периода времени физики считали, что инертная структура кристаллов — единственный предсказуемый и воспроизводимый физический порядок, а приближение к равновесию — единственный тип эволюции, выводимый из фундаментальных законов физики. Любая попытка экстраполяции за пределы термодинамического описания была направлена на то, чтобы определить редкий и непредсказуемый тип эволюции, описанием которого занимаются биология и социальные науки. Как, например, совместить дарвиновскую эволюцию (статистический отбор редких событий) со статистическим исчезновением всех индивидуальных особенностей, всех редких событий, о котором говорит Больцман? Роже Кэллуа поставил вопрос так: «Могут ли и Карно и Дарвин быть правы?»[141]

Поделиться:
Популярные книги

Скандальный развод, или Хозяйка владений "Драконье сердце"

Милославская Анастасия
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Скандальный развод, или Хозяйка владений Драконье сердце

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Кодекс Охотника. Книга VIII

Винокуров Юрий
8. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга VIII

Светлая тьма. Советник

Шмаков Алексей Семенович
6. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Светлая тьма. Советник

Возвращение Безумного Бога

Тесленок Кирилл Геннадьевич
1. Возвращение Безумного Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Возвращение Безумного Бога

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Звездная Кровь. Изгой

Елисеев Алексей Станиславович
1. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой

Идеальный мир для Лекаря 28

Сапфир Олег
28. Лекарь
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 28

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Звездная Кровь. Изгой II

Елисеев Алексей Станиславович
2. Звездная Кровь. Изгой
Фантастика:
боевая фантастика
попаданцы
технофэнтези
рпг
5.00
рейтинг книги
Звездная Кровь. Изгой II

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5