Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Весьма важным типом каталитических процессов (особенно в биологии) являются так называемые автокаталитические реакции, в которых для синтеза некоторого вещества требуется присутствие этого же вещества. Иначе говоря, чтобы получить в результате реакции вещество X, мы должны начать с системы, содержащей Х с самого начала. Например, очень часто молекула Х активирует фермент: присоединяясь к молекуле фермента, Х стабилизирует такую конфигурацию, которая делает легкодоступными активные участки. Автокаталитическим процессам соответствуют схемы реакций типа А+2Х->3Х (в присутствии молекул Х одна молекула А превращается в одну молекулу X).

Иначе говоря, нам необходимо иметь X, чтобы произвести еще X. Графически автокаталитическне реакции принято изображать с помощью реакционной петли:

Важная особенность систем с такими реакционными петлями состоит в том, что кинетические уравнения, которые описывают происходящие в них изменения, являются нелинейными дифференциальными уравнениями.

Если мы применим тот же метод, то для реакции A+2X->3X получим кинетическое уравнение dX/dt=КАХ2, т. е. скорость изменения концентрации вещества Х окажется пропорциональной квадрату его концентрации.

Другой весьма важный класс каталитических реакций в биологии — так называемый кросс-катализ — представлен для системы 2X+Y->3X, B+X->Y+D на рис. 3.

Рис. 3. На этом графике представлены пути реакций для «брюсселятора» (более подробно «брюсселятор» описан в тексте).

В данном случае мы действительно имеем дело с кросс-катализом (т. е. «перекрестным катализом»), поскольку из Y получается X, а из Х одновременно получается Y. Катализ не обязательно увеличивает скорость реакции. Он может и замедлять, или ингибировать, ее. Графически это также изображается с помощью соответствующих петель обратной связи.

Характерные математические особенности нелинейных дифференциальных уравнений, описывающих химические реакции с каталитическими стадиями, как мы убедимся в дальнейшем, имеют жизненно важное значение для термодинамики сильно неравновесных химических процессов. Кроме того, как мы уже упоминали, биологами установлено, что петли обратной связи играют весьма существенную роль в метаболических функциях. Например, взаимосвязь между нуклеиновыми кислотами и протеинами может быть описана как кросс-катализ: нуклеиновые кислоты являются носителями информации, необходимой для синтеза протеинов, а протеины в свою очередь синтезируют нуклеиновые кислоты.

Помимо скоростей химических реакций, необходимо также учитывать скорости других необратимых процессов, таких, как перенос тепла и диффузия вещества. Скорости необратимых процессов называются также потоками и обозначаются буквой J. Общей теории, которая давала бы скорости, или потоки, не существует. В химических реакциях скорость зависит от молекулярного механизма, в чем нетрудно убедиться на уже приведенных примерах. Термодинамика необратимых процессов вводит величины еще одного типа: помимо скоростей или потоков J, она использует обобщенные силы X, т. е. «причины», вызывающие потоки. Простейшим примером может служить теплопроводность. Закон Фурье утверждает, что поток тепла J пропорционален градиенту температуры. Следовательно, градиент температуры есть та «сила», которая создает поток тепла. По определению, и поток и силы в состоянии теплового равновесия равны нулю. Как мы увидим в дальнейшем, производство энтропии P=diS/dt может быть вычислено по потоку и силам.

Рассмотрим определение обобщенной силы в случае химической реакции. Для простоты обратимся снова к реакции A+X->Y+B. Как мы уже знаем, в случае равновесия соотношение концентраций определяется законом действия масс. Теофил де Донде показал, что в качестве «химической силы» можно ввести сродство A, определяющее направление протекания химической реакции так

же, как градиент температуры определяет направление теплового потока. В рассматриваемом нами случае сродство пропорционально lnKBY/AX, где К — константа равновесия. Непосредственно видно, что сродство A обращается в нуль при достижении равновесия, где по закону действия масс AX/BY=K. Если мы станем выводить систему из равновесия, то сродство (по абсолютной величине) возрастет. В этом нетрудно убедиться, если исключить из системы некоторую долю молекул В по мере их образования в ходе реакции. Можно сказать, что сродство служит мерой расстояния между фактическим состоянием системы и ее равновесным состоянием. Кроме того, как мы упоминали, знак сродства определяет направление химической реакции. Если сродство A положительно, то молекул В и Y «слишком много» и суммарная реакция идет в направлении B+Y->A+X. И, наоборот, если сродство A отрицательно, то молекул В и Y «слишком мало» и суммарная реакция идет в обратном направлении.

Сродство в том смысле, в каком мы его определили, является уточненным вариантом старинного сродства, о которой писали еще алхимики, стремившиеся разобраться в способности химических веществ вступать в одни и не вступать в другие реакции, т. е. в «симпатиях» и «антипатиях» молекул. Идея о том, что химическая активность не сводима к механическим траекториям, к невозмутимому господству динамических законов, подчеркивалась с самого начала. Мы уже приводили обширную выдержку из Дидро. Позднее Ницше по другому поводу заметил, что смешно говорить о «химических законах», как будто химические вещества подчиняются законам, аналогичным законам морали. В химии, утверждал Ницше, не существует ограничений и каждое вещество вольно поступать как ему «вздумается». Речь идет не об «уважении», питаемом одним веществом к другому, а о силовой борьбе, о непрестанном подчинении слабого сильному[144]. Химическое равновесие с обращающимся в нуль сродством соответствует разрешению этого конфликта. С этой точки зрения специфичность термодинамического сродства перефразирует на современном языке старую проблему[145] — проблему различия между скованным жесткими нормами безразличным миром динамических законов и миром спонтанной продуктивной активности, которому принадлежат химические реакции.

Нельзя не отметить принципиальное концептуальное различие между физикой и химией. В классической физике мы можем по крайней мере представлять себе обратимые процессы, такие, как движение маятника без трения. Пренебрежение необратимыми процессами в динамике всегда соответствует идеализации, но по крайней мере в некоторых случаях эта идеализация разумна. В химии все обстоит совершенно иначе. Процессы, изучением которых она занимается (химические превращения, характеризуемые скоростями реакций), необратимы. По этой причине химию невозможно свести к лежащей в основе классической или квантовой механики идеализации, в которой прошлое и будущее играют эквивалентные роли.

Как и следовало ожидать, все необратимые процессы сопровождаются производством энтропии. Каждый из них входит в diS в виде произведения скорости, или потока J и соответствующей силы X. Полное производство энтропии в единицу времени P=diS/dt равно сумме всех таких вкладов, каждый из которых имеет вид произведения JX.

Термодинамику можно разделить на три большие области, изучение которых соответствует трем последовательным этапам в развитии термодинамики. В равновесной области производство энтропии, потоки и силы равны нулю. В слабо неравновесной области, где термодинамические силы «слабы», потоки Jk линейно зависят от сил. Наконец, третья область называется сильно неравновесной, или нелинейной, потому, что в ней потоки являются, вообще говоря, более сложными функциями сил. Охарактеризуем сначала некоторые общие особенности линейной термодинамики, характерные для слабо неравновесных систем.

Поделиться:
Популярные книги

Цикл "Отмороженный". Компиляция. Книги 1-14

Гарцевич Евгений Александрович
Отмороженный
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Цикл Отмороженный. Компиляция. Книги 1-14

Барон Дубов

Карелин Сергей Витальевич
1. Его Дубейшество
Фантастика:
юмористическое фэнтези
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Барон Дубов

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Искушение генерала драконов

Лунёва Мария
2. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Искушение генерала драконов

Держать удар

Иванов Дмитрий
11. Девяностые
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Держать удар

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

Бастард Императора. Том 10

Орлов Андрей Юрьевич
10. Бастард Императора
Фантастика:
городское фэнтези
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Бастард Императора. Том 10

Дикая фиалка заброшенных земель

Рейнер Виктория
1. Попаданки рулят!
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Дикая фиалка заброшенных земель

Сами мы не местные

Жукова Юлия Борисовна
2. Замуж с осложнениями
Фантастика:
юмористическая фантастика
космическая фантастика
9.35
рейтинг книги
Сами мы не местные

Наследница долины Рейн

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Наследница долины Рейн

В семье не без подвоха

Жукова Юлия Борисовна
3. Замуж с осложнениями
Фантастика:
социально-философская фантастика
космическая фантастика
юмористическое фэнтези
9.36
рейтинг книги
В семье не без подвоха