Чтение онлайн

на главную - закладки

Жанры

Пособие по журналистике данных
Шрифт:

CAR впервые была использована в 1952 году CBS для предсказания результатов президентских выборов. С 1960–х годов журналисты (в основном, занимавшиеся расследовательской журналистикой, и в основном из США) стремятся независимым образом контролировать власть путем анализа баз данных по информации из открытых источников научными методами. В рамках этого подхода, также известного как «журналистика общественного служения», сторонники этой журналистской техники, реализуемой при помощи компьютера, стремились выявлять тенденции, развенчивать общеизвестные истины или заблуждения и раскрывать данные о всяческих несправедливостях, творимых государственными властями или частными корпорациями. Например, Филип Мейер (Philip Meyer) пытался развенчать общепринятую трактовку беспорядков 1967 года в Детройте –

чтобы показать, что в них участвовали не только малообразованные южане. Сюжеты Билла Дедмена (Bill Dedman) из серии «Цвет денег» в 1980–е годы раскрывали информацию о систематических расовых предрассудках в кредитной политике ведущих финансовых институтов. В своей работе «Что пошло не так» Стив Дойг стремился проанализировать ущерб от урагана «Эндрю» в начале 1990–х годов, чтобы понять, в какой степени на силу этого ущерба оказали влияние недостатки в области политики и практики городского развития. Репортажи на основе данных стали ценной общественной работой и позволили журналистам завоевать известные награды.

В начале 1970–х был придуман термин «прецизионная журналистика» , чтобы описать этот новый тип сбора новостей: «применение социальных и поведенческих научно–исследовательских методов к журналистской практике». Прецизионная журналистика, как предполагалось, должна была использоваться в ведущих медийных организациях профессионалами в области журналистики и общественных наук. Этот термин родился в ответ на другой термин, «новый журнализм» или «новая журналистика» — форма журналистики, при которой к созданию репортажей применялась литературно–художественная техника. Мейер предполагает, что научная техника сбора данных и анализ – это именно то, что нужно журналистике, чтобы осуществлять свой поиск объективности и правды, а вовсе не литературные приемы.

Прецизионную журналистику можно понять как реакцию на некоторые из часто упоминаемых слабостей и недостатков журналистики: зависимость от пресс–релизов (позднее ее стали называть «чурналистикой»), предвзятость и предубеждение по отношению к авторитетным источникам, и так далее. По мнению Мейера, все это вытекает из недостатка информационной научной техники и научных методов, таких как опросы, документы публичного характера, общественные архивы, информация из открытых источников. В 1960–х годах практиковалось, чтобы прецизионная журналистика представляла маргинальные группы и связанные с ними сюжеты. По словам Мейера:

«Прецизионная журналистика была способом расширить набор инструментов репортера, чтобы освещать темы, которые ранее были недоступны, или лишь псевдодоступны, в зависимости от степени журналистской въедливости и тщательности журналиста. Она была особенно полезной, когда надо было заставить услышать голос меньшинства и групп диссидентов, которые боролись за представительство».

Влиятельная статья, опубликованная в 1980–е годы об отношениях между журналистикой и социальными, общественными науками, перекликается с нынешними дискуссиями вокруг журналистики данных. Авторы, два американских профессора в области журналистики, предполагают, что в 1970–е и 1980–е годы общественное понимание того, что такое новости, расширяется, и начинает представлять собой уже не узкую концепцию «новостных событий», а «создание ситуационных репортажей», или информирование о социальных тенденциях, тенденциях общественного развития. Используя базы данных по, например, переписи или какому–то исследованию, журналисты могут «выйти за рамки создания репортажей по конкретным, изолированными событиям, и начать предлагать контекст, который будет придавать этим событиям смысл и значение».

Как и следовало ожидать, практика использования данных для улучшения репортажей берет свое начало еще из тех времен, когда вокруг нас просто появились «данные». Как отмечаетСаймон Роджерс, первым примером журналистики данных в Guardian был материал еще 1821 года. Это список школ Манчестера с указанием числа школьников, которые их посещали, и затрат на школу. По данным Роджерса, это дало возможность впервые показать реальное количество учеников, получающих бесплатное образование, и это число было гораздо выше, чем демонстрировали официальные данные.

Рис 11.

Журналистика данных в Guardian в 1821 году (The Guardian)

Еще один ранний пример в Европе – это Флоренс Найтингейл и ее ключевое исследование «Смертность в британской армии» ( ‘Mortality of the British Army’), опубликованное в 1858 году. В своем отчете перед парламентом она использовала графики, чтобы выступить за улучшения в системе здравоохранения в британской армии. Самыми известными являются ее круговые секторные диаграммы, каждая из которых представляла собой информацию о смертях за месяц, и эти диаграммы ярко показали, что подавляющее большинство смертельных случаев было связано с предотвратимыми заболеваниями, а не с вражескими пулями.

Рис 12. Смертность в британской армии – от Флоренс Найтингейл (Florence Nightingale) (Изображение с Википедии)

Журналистика данных и создание репортажей при помощи компьютера

В настоящее время вокруг термина «журналистика данных» идут по всему миру споры о «преемственности и изменениях», а также о ее связи с этими предшествующими журналистскими практиками, в которых задействуется вычислительная техника для анализа наборов данных.

Некоторые считают, что есть разница между CAR и журналистикой данных. Они говорят, что CAR – это техника для сбора и анализа данных как способ усовершенствования и повышения качества журналистики (как правило, расследовательской), в то время как журналистика данных обращает внимание на способ, которым эти данные укладываются в общий журналистский рабочий процесс. В этом смысле журналистика данных уделяет столько же – если не больше – внимания самим данным, вместо того, чтобы использовать данные просто как средство для обнаружения или совершенствования сюжетов. Отсюда получаем, что Guardian Datablog или Texas Tribune публикуют наборы данных вместе с сюжетами, или даже просто наборы данных сами по себе, чтобы люди их исследовали и анализировали.

Еще одним отличием является то, что в прошлом журналисты, занимавшиеся расследовательской журналистикой, страдали бы от скудности информации по тому вопросу, на который они пытались ответить, или по той проблеме, о которой они собирались бы писать. И хотя это и сейчас, конечно, имеет место быть, тем не менее, в наличии имеется также подавляющее изобилие информации, с которой журналисты не обязательно знают что делать. Они не знают, как извлечь пользу из данных. Свежим примером является «Объединенная онлайн–информационная система» (Combined Online Information System), крупнейшая в Великобритании база данных, составленная из информации по расходам – создания которой так долго требовали сторонники прозрачности, но которая при этом озадачила и поставила в тупик многих журналистов после своего выхода. Как недавно написал мне Филип Мейер, «пока информации было мало, большая часть наших усилий была направлена на то, чтобы разыскать и собрать ее. Сейчас, когда информации в изобилии, более важна ее обработка».

С другой стороны, некоторые считают, что нет какого–то особого, значимого различия между журналистикой данных и компьютерной журналистикой. Сейчас совершенно очевидно, что даже у самых современных медийных практик, методов и норм есть история, а в них самих присутствует что–то новое. Вместо того, чтобы спорить о том, является ли журналистика данных совершенно новым явлением или нет, более плодотворной позицией было бы считать ее частью давней традиции, но появившейся при этом в ответ на новые обстоятельства и условия. Даже если бы не было разницы в целях, задачах и технике, возникновение термина «журналистика данных» в начале века означает новую фазу, в которой огромные объемы данных совершенно открыто доступны в сети, объединены со сложными пользовательско–центричными инструментами, а инструменты самостоятельной публикации и краудсорсинга позволяют большему количеству людей работать с бОльшими объемами данных легче, чем когда бы то ни было.

Поделиться:
Популярные книги

Альда. Дилогия

Ищенко Геннадий Владимирович
Альда
Фантастика:
фэнтези
7.75
рейтинг книги
Альда. Дилогия

Игрушка богов. Дилогия

Лосев Владимир
Игрушка богов
Фантастика:
фэнтези
4.50
рейтинг книги
Игрушка богов. Дилогия

Купец IV ранга

Вяч Павел
4. Купец
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Купец IV ранга

Газлайтер. Том 19

Володин Григорий Григорьевич
19. История Телепата
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Газлайтер. Том 19

Вспомнить всё (сборник)

Дик Филип Киндред
Фантастика:
научная фантастика
6.00
рейтинг книги
Вспомнить всё (сборник)

Предатель. Цена ошибки

Кучер Ая
Измена
Любовные романы:
современные любовные романы
5.75
рейтинг книги
Предатель. Цена ошибки

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Гарри Поттер (сборник 7 книг) (ЛП)

Роулинг Джоан Кэтлин
Фантастика:
фэнтези
5.00
рейтинг книги
Гарри Поттер (сборник 7 книг) (ЛП)

Камень. Книга восьмая

Минин Станислав
8. Камень
Фантастика:
фэнтези
боевая фантастика
7.00
рейтинг книги
Камень. Книга восьмая

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!

Шаман. Ключи от дома

Калбазов Константин Георгиевич
2. Шаман
Фантастика:
боевая фантастика
7.00
рейтинг книги
Шаман. Ключи от дома

Пистоль и шпага

Дроздов Анатолий Федорович
2. Штуцер и тесак
Фантастика:
альтернативная история
8.28
рейтинг книги
Пистоль и шпага

Боярышня Дуняша

Меллер Юлия Викторовна
1. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Дуняша

Вечный. Книга IV

Рокотов Алексей
4. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга IV