Чтение онлайн

на главную - закладки

Жанры

Приглашение в теорию чисел

ОРЕ О.

Шрифт:

1/2 x = 12 • 1 = 4 • 3.

Первое разложение дает

m = 12, n = 4, х = 24, y = 143, z = 145,

а второе

т = 4, n = 3, х = 24, у = 7, z = 25.

Третий и последний случай приводит нас к необходимости коснуться одной важной задачи теории чисел. Если z — гипотенуза простейшего треугольника Пифагора, то в соответствии с (5.2.7) имеем

z = m2 + n2. (5.3.5)

т. е.

число z есть сумма квадратов чисел m и n, удовлетворяющих условиям (5.2.8).

Это приводит нас к постановке вопроса, уже решенного П. Ферма: когда целое число можно представить в виде суммы квадратов двух целых чисел:

z = a2 + b2? (5.3.6)

На время забудем все ограничения на числа а и b. Пусть они могут иметь общие множители, а также каждое из них, или даже сразу оба могут обращаться в нуль. Перечислим все целые числа, меньшие десяти, представляемые в виде суммы двух квадратов:

0 = 02 + 02, 1 = 12 + 02, 2 = 12 + 12, 4 = 22 + 02, 5 = 22 + 12, 8 = 22 + 22, 9 = 32 + 02, 10 = 32+12.

Оставшиеся числа 3, 6 и 7 не представляются в виде суммы двух квадратов.

Опишем, как можно выяснить, является ли число суммой двух квадратов. К сожалению, мы не можем привести здесь доказательства ввиду его сложности.

Рассмотрим вначале простые числа. Каждое простое число вида р = 4n + 1 всегда является суммой двух квадратов; например,

5 = 22 + 12, 13 = 32 + 22, 17 = 42+12, 29 = 52 + 22.

Существенно, что такое представление может осуществляться единственным способом.

Остальные нечетные простые числа имеют вид q = 4n + 3, т. е.

q = 3, 7, 11, 19, 23, 31…

Ни одно такое простое число не представляется в виде суммы двух квадратов; более того, вообще ни одно число вида 4n + 3 не может быть представлено в виде суммы двух квадратов. Чтобы убедиться в этом, заметим, что если целые числа а и b оба четные, то а2 и b2 оба делятся на 4, отсюда и а2 + b2 делится на 4. Если они оба нечетные, например, а = 2k + 1, b = 2l + 1, то а2 + b2 = 4k2 + 4k + 1 + 4l2 + 4l + 1 = 4 (k2l2k + l) + 2, поэтому а2 + b2 имеет при делении на 4 остаток 2. И наконец, если одно из целых чисел а и b четное, а другое — нечетное, скажем, а = 2k + 1, b = 2l,

то а2 + b2 = 4k2 + 4k + 1 + 4l2 и имеет при делении на 4 остаток 1. Итак, мы перебрали все возможности и можем заключить, что сумма двух квадратов никогда не представима в виде 4n + 3.

Чтобы закончить наше исследование для простых чисел, заметим, что 2 = 12 + 12.

Для того чтобы проверить, является ли составное число z суммой двух квадратов, разложим его на простые множители

z = p1α1 p2α2 •… • pkαk. (5.3.7)

Число z оказывается суммой двух квадратов тогда и только тогда, когда каждое простое число pi вида 4п + 3 входит в разложение в четной степени.

Примеры. Число z = 198 = 2 • З2 • 11 не является суммой двух квадратов, так как 11 имеет вид 4n + 3 и входит в разложение в первой степени.

Число z = 194 = 2 • 97 является суммой двух квадратов, так как ни один из его простых множителей не является числом вида 4n + 3. Действительно, z = 132 +52.

Вернемся к нашей первоначальной задаче нахождения всех чисел z, которые могут быть гипотенузами простейших треугольников Пифагора. Такое число z должно быть представимо в виде z = m2 + n2, где числа m и n удовлетворяют условиям (5.2.8). Необходимым и достаточным условием для этого является следующее: каждый из простых множителей числа z должен иметь вид 4n + 1. Доказательство этого утверждения мы вновь опускаем.

Примеры. z = 41. Это число легко представить в виде суммы двух квадратов искомого вида, z = 52 + 42, так что m = 5, n = 4 и x = 40, у = 9, z = 41 выражают длины сторон соответствующего треугольника.

z = 1105 = 5 • 13 • 17. Существуют четыре представления этого числа в виде суммы двух квадратов:

1105 = ЗЗ2 + 42 = 322 + 92 = 312 + 122 = 242 + 232.

Стороны соответствующих треугольников вычислите самостоятельно.

Целый ряд задач о треугольниках Пифагора может быть решен при помощи наших формул (5.2.7)

х = 2mn, у = m2n2, z = m2 + n2.

Поделиться:
Популярные книги

Черный маг императора 3

Герда Александр
3. Черный маг императора
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора 3

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

S-T-I-K-S. Пройти через туман

Елисеев Алексей Станиславович
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
7.00
рейтинг книги
S-T-I-K-S. Пройти через туман

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Я князь. Книга XVIII

Дрейк Сириус
18. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я князь. Книга XVIII

Королевская Академия Магии. Неестественный Отбор

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Королевская Академия Магии. Неестественный Отбор

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Жребий некроманта. Надежда рода

Решетов Евгений Валерьевич
1. Жребий некроманта
Фантастика:
фэнтези
попаданцы
6.50
рейтинг книги
Жребий некроманта. Надежда рода