Чтение онлайн

на главную - закладки

Жанры

Приглашение в теорию чисел

ОРЕ О.

Шрифт:

Например, можно искать треугольники Пифагора с заданной площадью А. Если такой треугольник является простейшим, то его площадь равна

А = 1/2 ху = mn (m — n) (+ n). (5.3.8)

Здесь три из четырех множителей нечетны. Нетрудно видеть, что они попарно взаимно простые. Поэтому, чтобы найти все возможные значения чисел m и n, можно выделить из числа А два взаимно простых нечетных множителя k и k (k > l),

положив

m + n = k, m — n = l,

что дает

m = 1/2 (k + l), n = 1/2 (k — l).

После этого мы проверяем, удовлетворяют ли эти числа условиям (5.3.8).

Рассуждения несколько упрощаются, если заметить, что два множителя в выражении (5.3.8) могут равняться 1 только в единственном случае:

m = 2, n = 1, A = 6.

Действительно, два множителя в (5.3.8) могут быть равны 1, только если

n = m — n = 1,

что и дает указанное выше значение.

Пример. Найдем все треугольники Пифагора с площадью А = 360. Разложение числа А на простые множители таково: A = 23 32 • 5. Число А может быть единственным образом записано в виде произведения четырех взаимно простых множителей: А = 8 • 1 • 5 • 9. Если мы ищем простейший треугольник, то mn = 9. Однако если m = 8, то n = 1 и m — n = 7, но А не делится на 7, а вторая возможность (n = 8, m = 1) исключается условием > n. Поэтому такого треугольника не существует.

Этот результат не исключает возможности существования треугольников с площадью А = 360, не являющихся простейшими. Следующее соображение может быть использовано в общем случае для нахождения треугольников заданной площади, не являющихся простейшими. Если длины всех сторон треугольника имеют общий делитель d, т. е. могут быть записаны как

dx, dy, dz,

то его площадь равна

А = 1/2 dx dy = d2mn (m — n) (m + n).

Таким образом, число d2 является множителем числа А и, если число d есть наибольший общий делитель длин сторон, то число

А0A/d2mn (m — n) (m + n)

должно быть площадью простейшего треугольника.

Применим полученный результат к только что рассмотренному случаю А = 360. У этого числа существуют три множителя, являющиеся квадратами;

d1 = 4, d2 = 9, d3 = 36.

Соответственно

находим

A/d1 =90 = 2 • 32 • 5, A/d2 = 40 = 23 • 5, A/d3 = 10 = 2 • 5.

Не существует способов написать число 40 или 10 в виде произведения четырех взаимно простых множителей, а число 90 может быть представлено в таком виде, причем единственным образом, а именно:

90 = 1 • 2 • З2 • 5.

(В числе сомножителей 1 может встречаться не более одного раза, за исключением случая m = 2, n = 1, А = 6.) Так как наибольшим множителем является 9, то мы должны взять mn = 9. Однако, перебирая все возможные значения m = 1, 2, 5, получим соответственно n = 8, 7, 4. Условие m n исключает все случаи, кроме m = 5, n = 4, для которого, однако, mn (m + n) (m — n) ≠ 90. Итак, мы получили, что не существует ни простейшего, ни иного треугольника Пифагора с площадью А = 360.

Можно было бы затронуть еще много других вопросов, но упомянем лишь об одном из них. Периметр треугольника равен

c = x + y + z; (5.3.9)

для простейшего треугольника Пифагора получаем

с = 2mn + (т2n2) + (m2 + n2) = 2n (m + n).

Мы предоставляем читателю самому отыскать метод нахождения всех треугольников Пифагора с заданным периметром. Не пренебрегайте рассмотрением

числовых примеров.

Мы решили задачу построения всех треугольников Пифагора. Это ведет нас к исследованию более общих связанных с ней задач. Естественным обобщением задачи Пифагора является задача Герона, названная по имени древнегреческого математика Герона, жившего в Александрии: найти все треугольники с целочисленными сторонами, площади которых также выражаются целыми числами. Эта задача отличается от задачи Пифагора тем, что условие наличия прямого угла заменено требованием целочисленности площади. Очевидно, что всякий треугольник Пифагора удовлетворяет условиям задачи Герона.

Для проверки того, является ли данный треугольник треугольником Герона, проще всего применить формулу Герона для площади треугольника,

где с — это периметр треугольника, определенный в (5.3.9). Хотя известно значительное число треугольников Герона, не существует общей формулы, описывающей все эти треугольники. Приведем несколько из них (не прямоугольных):

x = 7 y = 15 z = 20

Поделиться:
Популярные книги

Черный маг императора 3

Герда Александр
3. Черный маг императора
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Черный маг императора 3

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Пипец Котенку! 3

Майерс Александр
3. РОС: Пипец Котенку!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пипец Котенку! 3

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

S-T-I-K-S. Пройти через туман

Елисеев Алексей Станиславович
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
7.00
рейтинг книги
S-T-I-K-S. Пройти через туман

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Сводный гад

Рам Янка
2. Самбисты
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Сводный гад

Я князь. Книга XVIII

Дрейк Сириус
18. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я князь. Книга XVIII

Королевская Академия Магии. Неестественный Отбор

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Королевская Академия Магии. Неестественный Отбор

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Жребий некроманта. Надежда рода

Решетов Евгений Валерьевич
1. Жребий некроманта
Фантастика:
фэнтези
попаданцы
6.50
рейтинг книги
Жребий некроманта. Надежда рода