Чтение онлайн

на главную - закладки

Жанры

Приглашение в теорию чисел

ОРЕ О.

Шрифт:

a — b = 1 k = k (7.2.5)

есть целое число. Но предположим теперь на мгновение, что а и b — произвольные вещественные числа, необязательно целые. Тогда тот факт, что они сравнимы по модулю 1, означает, что их разность есть целое число, т. е. эти два числа имеют одинаковую дробную часть.

Пример. 8 1/3 ≡ 1 1/3 (mod 1), или

8,333… ≡ 1,333… (mod 1).

Вернемся

к свойствам обычных сравнений целых чисел; с этого момента мы будем всегда считать, что модуль является целым числом т ≥ 2.

Мы можем разделить числовую ось, начиная от начала координат в обоих направлениях на отрезки длиной m, как на рис. 17. Тогда каждое целое число а, положительное или отрицательное, попадает на один из этих отрезков или на одну из точек деления; таким образом, мы можем записать

a = km + r, (7.2.6)

где k — некоторое целое число, а r— одно из чисел

0, 1, 2…, m — 1. (7.2.7)

Рис. 17.

Это является незначительным обобщением деления положительных чисел, описанного в § 3 главы 4. Здесь мы также называем число r в формуле (7.2.6) остатком при делении числа а на число m или остатком по модулю m.

Примеры.

1) а = 11, m = 7, 11 = 7 1 + 4,

2) а = —11, m = 7, —11 = 7 (—2) + 3.

Деление (7.2.6) может быть также записано как сравнение

аr (mod m). (7.2.8)

Таким образом, каждое число сравнимо со своим остатком по модулю m. В приведенных выше примерах мы имеем

11 ≡ 4 (mod 7), — 11 ≡ 3 (mod 7).

Никакие два остатка в (7.2.7) не сравнимы по (mod m), так как разность между любыми двумя из них меньше, чем m. Поэтому два числа, которые не сравнимы по (mod m), должны иметь разные остатки. Итак, мы делаем вывод:

сравнение а b(mod m) выполняется тогда и только тогда, когда числа а и b имеют одинаковые остатки при делении на число m.

Существует другой способ представления этого сравнения. Предположим на мгновение, что а и b — целые положительные числа. Мы видели при обсуждении системы чисел в § 2 главы 6, что когда число а записано при основании m,

а = (аn…,

а1, а0)m,

то последняя цифра а0 является остатком числа а при делении его на число m. Если мы используем этот факт, чтобы иначе выразить нашу интерпретацию сравнения, то можно сказать:

сравнение а b (mod m) выполняется для целых (положительных) чисел а и b тогда и только тогда, когда числа а и b имеют одинаковые последние цифры в записи при основании m.

Например,

37 ≡ 87 (mod 10),

так как эти два числа имеют одну и ту же последнюю цифру в десятичной системе чисел.

Система задач 7.2.

1. Найдите остатки —37(mod 7), — 111 (mod 11), — 365 (mod 30).

§ 3. Алгебра сравнений

Из алгебры мы помним, что уравнения можно складывать, вычитать, умножать. Точно такие же правила справедливы для сравнений. Предположим, что мы имеем сравнения

ab (mod m), сd (mod m). (7.3.1)

По определению, это означает, что

a = b + mk, c = d + ml, (7.3.2)

где k и l — целые числа. Сложим уравнения (7.3.2).

В результате получаем

а + с = b + d + m (k + l),

что можем записать как

а + с ≡ b + d (mod m); (7.3.3)

другими словами, два сравнения можно складывать. Таким же образом можно показать, что одно сравнение можно вычитать из другого, т. е. что

a — c ≡ b — d (mod m). (7.3.4)

Пример.

11 ≡ —5 (mod 8) и 7 = — 9 (mod 8). (7.3.5)

Складывая их, получаем

18 ≡ — 14 (mod 8),

а вычитая,

4 ≡ 4 (mod 8).

Оба эти сравнения справедливы.

Можно также перемножить два сравнения. Из (7.3.1) и (7.3.2) следует, что

ac = bd + m(kdbl + mkl),

Поделиться:
Популярные книги

Эпоха Опустошителя. Том I

Павлов Вел
1. Вечное Ристалище
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эпоха Опустошителя. Том I

Проблема майора Багирова

Майер Кристина
1. Спецназ
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Проблема майора Багирова

Законы Рода. Том 13

Андрей Мельник
13. Граф Берестьев
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 13

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Цвет сверхдержавы - красный. Трилогия

Симонов Сергей
Цвет сверхдержавы - красный
Фантастика:
попаданцы
альтернативная история
8.06
рейтинг книги
Цвет сверхдержавы - красный. Трилогия

Болтливый мертвец

Фрай Макс
7. Лабиринты Ехо
Фантастика:
фэнтези
9.41
рейтинг книги
Болтливый мертвец

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь