Приключения инженераРоман
Шрифт:
Но на самолете калибровать расположение обратного провода практически невозможно. Во-первых, там не повернешься. Во-вторых, скажите спасибо, что вас вообще пустили чего-то мерить, потому что через полчаса надо лететь, а вы тут расположились, как у себя дома. Так что, давайте-ка побыстрее собирайте свое добро и топайте отсюда. Придете завтра утром или после обеда, если полета не будет.
А в-третьих, ну какой техник будет вообще чего-то там калибровать? Он бросит этот провод на пол безо всякого научного обоснования и будет топтать его своими сапожищами, не обращая внимания на уравнения электромагнитного поля великого английского физика Джеймса Клерка Максвелла. И поэтому эти уравнения оказались препятствием на пути разработки удобной и простой методики создания эталонных
Как раз к этому времени автор начал разбираться с эфиродинамическими построениями в области электродинамики. И ему, автору, то есть мне, пришла в голову крамольная мысль, что я не понял самой сути законов Фарадея. А закон этот проверен многократно, по нему считаются все контуры, все трансформаторы, ну нет вопросов! Но я, как бывший радиолюбитель, помнил, что расчет — расчетом, но после того как катушка намотана, ее обязательно нужно потом подгонять, настраивать. А у трансформаторов вообще существуют так называемые магнитные поля рассеивания. Короче говоря, закон Фарадея точно почему-то не выполняется. А, кроме того, непонятен сам механизм возникновения ЭДС в контуре.
Тут надо сделать небольшое отступление. В соответствии с законом Фарадея электродвижущая сила возникает в контуре тогда, когда внутри этого контура, то есть в дырке, изменяется магнитное поле. Никакого взаимодействия между этим самым полем и проводом закон Фарадея не предусматривает. А ведь в другом случае, когда провод перемещается в магнитном поле, это взаимодействие налицо: там фигурирует скорость пересечения проводом магнитного поля, его длина и напряженность поля. Там никаких дырок нет. А тут есть. Что-то не так. Тем более, что эфиродинамика, столь любезная сердцу ее автора, то есть моему, рассматривает процесс иначе, чем это следует из закона Фарадея. Она утверждает, что магнитное поле выходит из одного провода, в котором ток течет, и распространяется во все стороны, ослабляясь по мере удаления от этого провода. Где-то по дороге оно, это поле, натыкается на второй проводник, пересекает его и создает в нем тем самым ЭДС, хотя это и не всегда желательно. Получается, что чем дальше вы отнесете этот второй провод от первого, тем меньше в нем будет создаваться ЭДС. А дырка тут совсем ни при чем.
Но тогда, если у двух рядом лежащих проводов расстояние между их осями составляет 3 мм, а обратный провод отнесен на 3 см, то он, этот обратный провод, создаст наводку всего лишь в 10 % от основной, а если на 30 см, то всего лишь в 1 %.
Получается, что техник может бросить обратный провод прямо на пол на полном законном основании, забыть про него, и все будет точно. Лишь бы не порвал, прогуливаясь по нему.
Но все это надо было проверить.
У нас в лаборатории работала одна дама, Любовь Михайловна. Она бывшая детдомовка, и у нее очень развито чувство правды и справедливости. Надо сказать, что избыток этого чувства иногда очень мешал в работе, но как работник она отличалась повышенной добросовестностью и тщательностью. И уж если она за что бралась, то ее можно было не проверять, все делалось в лучшем виде.
— Любовь Михайловна, — обратился я к ней, — сделали бы вы два мерных контура с калиброванными расстояниями между ними. Размеры контуров надо сделать такими, чтобы уместились на столе. Натыкайте, пожалуйста, гнезд на планочке, измерьте расстояния, запустите в один контур ток, в другой поставьте вольтметр, а потом расскажите, что получилось.
Любовь Михайловна все сделала. Она меняла токи, частоту, меняла расстояния и в результате всего этого выяснила, что для больших контуров права эфиродинамика, а не Максвелл. Правда, попутно выяснилось, что на малых расстояниях данные по Максвеллу и по эфиродинамике совпадают, но тоже не совсем. Но в основном стало ясно: методику можно создавать, ГОСТ писать, а обратный провод бросать, как попало. Что мы и сделали. Но стоило нам это сделать, как выяснилось, что в американском документе DО-160, который только что вышел, сделано все так же, как и у нас, хотя и безо всяких эфиродинамических рассуждений. И теперь у нас с американцами методика одна и та же, и опять нам не верят, что
Однако мне не давали покоя те отклонения, которые обнаружила Любовь Михайловна при взаимодействии проводов на малых расстояниях. Дело в том, что здесь должен действовать Закон полного тока, вытекающий из тех же максвелловских уравнений. А тут были явные огрехи и совсем не малые. И я вспомнил, что эфир сжимаем, потому что это всего лишь обычный газ, хотя и тонкой структуры, а значит, и магнитное поле, сотворенное из этого же газа, тоже должно сжиматься. Если это так, то все становится объяснимым. Но сначала надо бы посмотреть, кто же до нас померил и проверил этот Закон полного тока, в соответствии с которым магнитное поле должно убывать строго обратно пропорционально расстоянию от токонесущего проводника. Ведь этот закон уже более ста лет переписывается из одного учебника в другой, значит, он верен, строг, его наверняка проверяли! Как же может быть иначе?!
И тут оказалось, о чудо! Никто и никогда за все время существования электротехники, электродинамики, радиотехники и электроники не производил таких измерений. Просто все верили этому Закону на слово, настолько он был очевиден. И о том, что в нем могут быть какие-либо неточности, с нами и разговаривать никто не хотел.
Было решено кое-что проверить. Контур был модернизирован, и та же Любовь Михайловна произвела измерения. И все подтвердилось. Оказалось, что в ближней зоне существуют о-о-чень даже большие отклонения от максвелловских зависимостей, раза в три, четыре и даже в пять. Это и понятно. Максвелл полагал, что эфир — несжимаемая жидкость, а он оказался сжимаемым газом. В ближней зоне эфир сжимается сильнее, и магнитное поле тоже, а подальше — слабее, поэтому там зависимости оказались ближе к максвелловским. Обо всем этом я рассказал на страницах своей книги «Общая эфиродинамика».
Из всего этого вытекает, что магнитное поле (как выяснилось, и электрическое тоже) помимо всего прочего должно характеризоваться еще одним параметром — плотностью его в вакууме, то есть характеристикой, которую электрики пока что забыли ввести в обиход. А надо бы. Энергия этого поля будет выше, чем если ее считать по обычным формулам или мерить обычными датчиками. Не в этом ли кроются истоки некоторых конфликтов между производителями электроэнергии на электростанциях и потребителями электроэнергии на всевозможных заводах? В этих конфликтах никак в свое время не могли разобраться, куда девалась энергия по дороге, и кто за нее будет платить? И вообще, из этой новой характеристики магнитного поля много чего следует для дальнейшего.
Вот до чего можно додуматься, если следовать заветам докторов: прежде чем рекомендовать способ лечения, попробуй его на себе.
4. Нам электричество сделать все сумеет
Несмотря на бесспорные успехи современной теории электромагнетизма, создание на ее основе таких направлений, как электротехника и радиотехника, электроника и полупроводниковая техника, а также и других направлений, широко подтвержденных экспериментальным и промышленным опытом, считать эту теорию завершенной нет оснований.
Однажды перед автором возникла проблема: потребовалось рассчитать плотность переменного тока, испускаемого двумя электродами, опущенными в соленую воду.
«Экое дело! — рассудил автор. — Граничные условия нам известны, это размеры электродов и расстояние между ними. Для воды все параметры даны, это магнитная и электрическая проницаемости и проводимость. Излучаемый ток и его частота нам тоже известны. Возьмем уравнения Максвелла, подставим туда граничные и начальные условия, зададимся расстоянием от оси диполя, вот и все! Решение будет найдено, недаром у меня в институте стояла пятерка по ТОЭ — теоретическим основам электротехники!»