Чтение онлайн

на главную - закладки

Жанры

Принцесса или тигр
Шрифт:

Указанный факт, как выяснится ниже, имеет важное теоретическое значение!

9. Ответом на поставленный вопрос будет «да». Возьмем в качестве У число 332A33. Это число порождает двойной ассоциат числа АЗЗ, который в свою очередь является ассоциатом числа A332/433. Но число A332A33 и есть АY; следовательно, число У порождает ассоциат числа А У.

Для частного примера, предложенного Мак-Каллохом (найти число У, которое порождало бы ассоциат числа 56 У), решением будет число У=3325633.

10. Решением является число 3332333. Оно порождает тройной ассоциат числа 333, который является

двойным ассоциатом ассоциата числа 333. При этом ассоциат числа 333 есть число 3332333, и, стало быть, число 3332333 порождает двойной ассоциат числа 3332333.

Заметим общую систему: число 323 порождает само себя, число 33233 порождает свой ассоциат, число 332333 порождает двойной ассоциат самого себя. Далее, число 333323333 порождает свой тройной ассоциат, число 33333233333 порождает четверной ассоциат самого себя и т. д. (Во всем этом читатель вполне может убедиться сам.)

7. Решением является X = 3332333. Это число порождает тройной ассоциат числа A333, который является двойным ассоциатом ассоциата числа A333. При этом ассоциатом числа А333 оказывается число А3332АЗЗЗ, которое в свою очередь и есть АХ. Итак, число X порождает двойной ассоциат числа АХ.

В частном случае, когда А = 78, решением будет число 333278333.

12. Очевидно, что ответом будет N = 23. (Ведь мы уже знаем, что число 323 порождает само себя, поэтому, положив N = 23, мы действительно имеем, что число 3N порождает число 3N.)

13. Ответ: N = 22.

14. Ответ: N = 232.

15. Конечно, N = 2.

16. В этом случае вполне подойдет любая цепочка двоек.

17. Да; например, N = 32.

18. Положить N = 33.

19. Положить N = 32323.

20. Как читатель легко может удостовериться сам, любое число, начинающееся с двух или более троек, будет порождать число большей длины, нежели число N2. (Например, если N — число вида 332Х, и h — длина числа X, то само число N будет порождать двойной ассоциат числа X, который имеет длину 4h+3, в то время как само число N2 имеет длину h+4). Точно так же нам никак не подойдет ни одно число N вида

2Х, поскольку если и существует некое число N, которое порождает число N2, то оно обязательно должно быть вида 32Х. Далее, число 32Х порождает число Х2Х, тогда как нам требуется получить число 32X2. Если Х2Х представляет собой то же самое число, что и 32X2, то, обозначая, как обычно, через h длину числа X, мы должны прийти к условию 2h+1 = h+3, откуда следует, что h = 2. Итак, единственным числом, которое могло бы нас устроить (если, конечно, таковые существуют), должно быть число вида 32аb, где а и b — одиночные цифры, подлежащие определению ниже. Далее, число 32ab порождает число аb2ab, тогда как нам нужно получить число 32аb2. Итак, могут ли числа ab2ab и 32аb2 оказаться одним и тем же числом? Попробуем сравнить их цифру за цифрой:

ab2ab

32аb2.

Сравнивая первые цифры, мы получаем, что а = 3; из сравнения же третьих цифр имеем, что а = 2. Полученное противоречие доказывает, что наша задача неразрешима. Итак, не существует такого числа N, которое порождало бы число N2!

Принцип Крейга

Спустя две недели Крейг снова навестил Мак-Каллоха.

— Слыхал,

что ты построил новый вариант своей машины, — сказал Крейг. — Наши общие друзья рассказывали мне, будто твоя новая машина способна проделывать какие-то удивительные вещи. Это правда?

— Совершенно верно, — ответил Мак-Каллох не без гордости. — Моя новая машина, как и раньше, работает в соответствии с правилами 1 и 2, и, кроме того, в нее введены два новых правила. Однако я только что заварил свежего чая — давай выпьем по чашечке, прежде чем я познакомлю тебя с новыми правилами.

После отличного чая с восхитительными сдобными булочками Мак-Каллох приступил к делу:

— Под обращением некоторого числа я понимаю число, цифры которого записаны в обратном порядке; например, обращение числа 5934 есть число 4395. Вот первое из моих новых правил.

Правило 3. Для любых чисел X и У справедливо следующее: если число X порождает число У, то число 4Х порождает обращение числа У.

— Позволь мне проиллюстрировать это правило таким примером, — продолжал Мак-Каллох. — Выбери какое-нибудь произвольное число Y.

— Согласен, — сказал Крейг. — Допустим, я выбрал число 7695.

— Прекрасно. А теперь возьмем число X, которое порождает число 7695, а именно число 27695, потом введем в машину число 427695 и посмотрим, что получится. Мак-Каллох ввел в машину число 427695, а та выдала, разумеется, 5967 — обращение 7695.

— Прежде чем познакомить тебя со следующим правилом, — сказал Мак-Каллох, — я хочу продемонстрировать еще несколько операций, которые моя машина может проделывать с помощью правила 3, конечно, в совокупности с правилами 1 и 2.

1. — Ты, конечно, помнишь, — сказал Мак-Каллох, — что число 323 порождает само себя. Так вот, для моей старой машины, в которую еще не было заложено правило 3, а использовались лишь правила 1 и 2,— число 323 было единственным числом, которое могло порождать самое себя. Для моей теперешней машины ситуация оказывается несколько иной. Можешь ли ты найти какое-нибудь другое число, которое порождало бы самое себя? Кроме того, сколько существует таких чисел?

Решение этой задачи не отняло у Крейга много времени. А вы сумеете ее решить? (Ответ Крейга приведен в разделе «Решения».)

2. — Это было превосходно, — одобрительно сказал Мак-Каллох, внимательно выслушав пояснения Крейга. — Тогда позволь задать тебе другую задачу. Я называю число симметричным, если оно читается одинаково в ту и другую сторону, то есть если оно равно своему обращению. Так, например, числа вида 58385 или 7447 — симметричны. Числа, не являющиеся симметричными, я называю несимметричными— например, такие, как 46733 или 3251. Очевидно, что существует число, которое порождает обращение самого себя — это число 323; действительно, оно порождает само себя и к тому же симметрично. Для моей первой машины, в которую не было заложено правило 3, не существовало такого несимметричного числа, которое порождало бы свое собственное обращение. Однако в случае использования правила 3 такое число все-таки существует — и на самом деле даже не одно. Можешь ли ты найти такое число?

Поделиться:
Популярные книги

Аномальный наследник. Том 1 и Том 2

Тарс Элиан
1. Аномальный наследник
Фантастика:
боевая фантастика
альтернативная история
8.50
рейтинг книги
Аномальный наследник. Том 1 и Том 2

Пипец Котенку! 4

Майерс Александр
4. РОС: Пипец Котенку!
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Пипец Котенку! 4

Контрактер Душ

Шмаков Алексей Семенович
1. Контрактер Душ
Фантастика:
фэнтези
попаданцы
аниме
5.20
рейтинг книги
Контрактер Душ

(Не)свободные, или Фиктивная жена драконьего военачальника

Найт Алекс
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(Не)свободные, или Фиктивная жена драконьего военачальника

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Русь. Строительство империи

Гросов Виктор
1. Вежа. Русь
Фантастика:
альтернативная история
рпг
5.00
рейтинг книги
Русь. Строительство империи

Путь молодого бога

Рус Дмитрий
8. Играть, чтобы жить
Фантастика:
фэнтези
7.70
рейтинг книги
Путь молодого бога

Инвестиго, из медика в маги

Рэд Илья
1. Инвестиго
Фантастика:
фэнтези
городское фэнтези
попаданцы
5.00
рейтинг книги
Инвестиго, из медика в маги

Бестужев. Служба Государевой Безопасности. Книга вторая

Измайлов Сергей
2. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности. Книга вторая

Попаданка в семье драконов

Свадьбина Любовь
Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.37
рейтинг книги
Попаданка в семье драконов

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Ох уж этот Мин Джин Хо 4

Кронос Александр
4. Мин Джин Хо
Фантастика:
попаданцы
дорама
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 4

Часовое сердце

Щерба Наталья Васильевна
2. Часодеи
Фантастика:
фэнтези
9.27
рейтинг книги
Часовое сердце