Программирование для Linux. Профессиональный подход
Шрифт:
Linux, как и большинство операционных систем, взаимодействует с аппаратными устройствами посредством модульных программных компонентов, называемых драйверами. Драйвер скрывает от операционной системы детали взаимодействия с устройством и предоставляет в распоряжение системы стандартный интерфейс обращения к устройству.
В Linux драйверы устройств являются частью ядра и могут подключаться к ядру статически либо по запросу в виде модулей. Драйверы недоступны напрямую пользовательским процессам. Но в Linux имеется особый механизм — специальные файловые объекты, позволяющие процессам взаимодействовать с драйверами, а через них — с аппаратными
В Linux есть также ряд файловых объектов, предназначенных для доступа к ядру, а не к драйверам устройств. Такие объекты не связаны с аппаратными устройствами. Они реализуют специальные функции, используемые приложениями и системными программами.
Описанные в этой главе методики позволяют непосредственно взаимодействовать с драйверами устройств, работающими в ядра Linux, а через них — с аппаратными устройствами, подключенными к системе. Применить эти методики следует осторожно, чтобы не нарушить работоспособность системы
6.1. Типы устройств
Файлы устройств не являются обычными файлами: с ними не связаны блоки данных на диске. Данные, помещаемые в такой файл или извлекаемые из него, передаются соответствующему драйверу устройства или принимаются от него, а драйвер, в свою очередь, осуществляет обмен данными с обслуживаемым устройством. Устройства классифицируются по двум типам.
■ Символьные (байт-ориентированные) устройства читают и записывают данные в виде потока байтов. Сюда входят последовательные и параллельные порты, накопители на магнитной ленте, терминалы и звуковые платы.
■ Блочные (блок-ориентированные) устройства читают и записывают данные блоками фиксированного размера. В отличие от символьных устройств блочные устройства предоставляют произвольный доступ к своим данным. В качестве примера можно назвать жесткий диск.
Как правило, приложения не работают с блочными устройствами. В каждом разделе жесткого диска содержится файловая система, которая монтируется к дереву корневой файловой системы Linux. Лишь ядро, реализующее функции файловой системы, получает прямой доступ к блочному устройству. Программы обращаются к содержимому диска через обычные файлы и каталоги.
Драйверы блочных устройств имеют прямой доступ к данным, хранящимся на диске. В большинстве Linux-систем прямой доступ к таким устройствам разрешен лишь процессам, выполняющимся от имени пользователя
Приложениям иногда приходится иметь дело с символьными устройствами: об этом
6.2. Номера устройств
ОС Linux идентифицирует устройства двумя числами: старшим номером устройства и младшим номером устройства. Старший номер указывает на то, какой драйвер соответствует устройству. Соответствие между старшими номерами устройств и драйверами жестко зафиксировано в исходных файлах ядра Linux. Двум разным драйверам может соответствовать одинаковый старший номер. Это значит, что один драйвер управляет символьным устройством, а второй — блочным. Младшие номера позволяют различать отдельные устройства или аппаратные компоненты, управляемые одним драйвером. Значение младшего номера зависит от драйвера.
Например, устройству со старшим номером 3 соответствует основной контроллер IDE. К этому контроллеру могут быть подключены два устройства (жесткие диски, накопитель на магнитной лейте или дисковод CD-ROM). "Главному" устройству будет соответствовать младший номер 0, а "подчиненному" устройству — номер 64. Отдельные разделы главного устройства (если он поддерживает разбивку на разделы) будут иметь младшие номера 1, 2, 3 и т.д. Разделы подчиненного устройства представляются младшими номерами 65, 66, 67 и т.д.
Список старших номеров устройств можно узнать в документации к исходным текстам ядра Linux. Во многих дистрибутивах эта информация хранится в файле
6.3. Файловые ссылки на устройства
Ссылки на устройства напоминают обычные файлы. Их можно перемещать с помощью команды
Ссылка на устройство создается с помощью команды
Первый аргумент команды