Чтение онлайн

на главную - закладки

Жанры

Программирование игр и головоломок
Шрифт:

n = p * q,

то либо p = q, либо один из сомножителей больше другого, так что можно считать, что p — делитель, q — частное и p <= q. Поэтому будем делить n на последовательно возрастающие простые числа, для которых частное больше или равно делителю. Так как мы не располагаем таблицей простых чисел, то используем последовательность Делителей, которая заведомо содержит все простые числа, например, последовательность нечетных чисел или лучше целых чисел вида 6k ± 1.

Число операций растет как квадратный корень из n. Если вы добавите к n

одну цифру, то вы увеличите время вычисления примерно раза в три. Но более важно другое. Если вы увеличиваете n, вы можете превысить «арифметические способности» своего компьютера. Как вы узнаете, правильно ли выполнено деление? Предел, которого вы можете достичь таким образом, существенно зависит от марки вашего микрокомпьютера [8] .

8

Да и от языка, который вы используете. — Примеч. ред.

Таким образом, вы должны бороться со следующими трудностями:

— точность вашего компьютера. Вам нужно иметь возможность делать вычисления с повышенной точностью, а это очень дорогостояще по времени;

— число требуемых операций;

— доверие к вашей программе. Если ваша машина сообщает вам, что

9873564383 = 631181 * 15643,

то вы, вероятно, сможете проверить этот результат на вашем микрокалькуляторе, А если компьютер сообщит вам, что 9873564401 — простое число, то как вы это проверите? Проделав вычисления на руках?

Вот основы метода Ж.-М. Полларда [POL].

По данному числу n (нечетному натуральному) строится последовательность по описанному ниже правилу:

— первый член последовательности равен 2;

— следующий за x элемент равен x^2 - 1 по модулю n (остатку от деления x^2 - 1 на n).

Оказывается, что эта последовательность периодична. Это легко видеть. Остаток от деления на n есть неотрицательное целое, меньшее n, поэтому не может быть более n различных остатков. Поэтому неизбежно, что как только число членов превысит n, среди членов последовательности мы получим два одинаковых, что и означает периодичность последовательности. Но она может оказаться периодической с намного более коротким периодом, чем n. Вот, например, последовательность для n = 137:

a1 = 2

a2 = 3

a3 = 8

a4 = 63

a5 = 132

a6 = 24

a7 = 27

a8 = 43

a9 = 67

a10 = 104

a11 = 129

a12 = 63 = a4

Последовательность периодична с периодом 8.

Пусть дана последовательность, вычисленная для некоторого n. Предположим, что n делится на s, и что соответствующая числу s последовательность периодична с периодом p.

Для достаточно большого i имеем ai+p = ai по модулю p, следовательно, ai+p ai делится на p. Так как, кроме того, и n делится на p, то наибольший общий делитель (НОД) чисел ai+pai

и n отличен от 1 [9] .

9

Повторим эти рассуждения чуть более подробно. Пусть

a1 = 2, ai+1 = ai^2 - 1 mod n,

b1 = 2, bi+1 = bi^2 mod s

— последовательности, соответствующие числам n и s соответственно. Тогда легко доказать по индукции, что bi = ai mod s. Одним из периодов последовательности {аi} является n. Значит, n является периодом и для последовательности {bi}. Известно, что любой период последовательности кратен ее минимальному периоду, Так как p, по определению, является минимальным периодом последовательности bi, то n делится на p. — Примеч. ред.

Построим последовательность Полларда для n = 22879:

a1 = 2

a2 = 3

a3 = 8

a4 = 63

a5 = 3968

a6 = 4271

a7 = 6877

a8 = 2235

a9 = 7602

a10 = 20928

a11 = 8486

a12 = 11982

НОД чисел a12a4 и n = 22879 есть 137, делитель числа n.

Если мы способны сказать, становится ли данная последовательность периодической (головоломка 1), то мы располагаем быстрым методом определения, имеет ли данное число делитель. Можете играть. Это не такая уж простая программа…

Есть тест на простоту числа, основанный на так называемой малой теореме Ферма: если n — простое, причем число n не является делителем a, то

an– 1 = 1 по модулю n.

Представим n в виде n = 2sm + 1. Назовем число n сильно псевдопростым по основанию a, если выполнено одно из следующих двух условий:

либо am = 1 по модулю n,

либо am2r = n– 1 по модулю n = 2sm + 1 для некоторого r, 0 <= r < s.

Очень мало сильно псевдопростых чисел, не являющихся простыми; так

2047 = 23 * 89 — сильно псевдопросто по основанию 2,

Поделиться:
Популярные книги

Эпоха Опустошителя. Том I

Павлов Вел
1. Вечное Ристалище
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эпоха Опустошителя. Том I

Проблема майора Багирова

Майер Кристина
1. Спецназ
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Проблема майора Багирова

Законы Рода. Том 13

Андрей Мельник
13. Граф Берестьев
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Законы Рода. Том 13

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

О, Путник!

Арбеков Александр Анатольевич
1. Квинтет. Миры
Фантастика:
социально-философская фантастика
5.00
рейтинг книги
О, Путник!

Прометей: каменный век

Рави Ивар
1. Прометей
Фантастика:
альтернативная история
6.82
рейтинг книги
Прометей: каменный век

Её (мой) ребенок

Рам Янка
Любовные романы:
современные любовные романы
6.91
рейтинг книги
Её (мой) ребенок

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Цвет сверхдержавы - красный. Трилогия

Симонов Сергей
Цвет сверхдержавы - красный
Фантастика:
попаданцы
альтернативная история
8.06
рейтинг книги
Цвет сверхдержавы - красный. Трилогия

Болтливый мертвец

Фрай Макс
7. Лабиринты Ехо
Фантастика:
фэнтези
9.41
рейтинг книги
Болтливый мертвец

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь