Чтение онлайн

на главную - закладки

Жанры

Программирование на языке Пролог для искусственного интеллекта

Братко Иван

Шрифт:

В этом предложении сказано: "X принадлежит L, если список L можно разбить на два списка таким образом, чтобы элемент X являлся головой второго из них. Разумеется,

принадлежит1
определяет то же самое отношение, что и
принадлежит
. Мы использовали другое имя только для того, чтобы различать таким образом две разные реализации этого отношения, Заметим, что, используя анонимную переменную, можно записать вышеприведенное предложение так:

принадлежит1( X, L) :-

 конк( _, [X | _ ], L).

Интересно

сравнить между собой эти две реализации отношения принадлежности.
Принадлежит
имеет довольно очевидный процедурный смысл:

 Для проверки, является ли X элементом списка L, нужно

 (1) сначала проверить, не совпадает ли голова списка L с X, а затем

 (2) проверить, не принадлежит ли X хвосту списка L.

С другой стороны,

принадлежит1
, наоборот, имеет очевидный декларативный смысл, но его процедурный смысл не столь очевиден.

Интересным упражнением было бы следующее: выяснить, как в действительности

принадлежит1
что-либо вычисляет. Некоторое представление об этом мы получим, рассмотрев запись всех шагов вычисления ответа на вопрос:

?- принадлежит1( b, [а, b, с] ).

На рис. 3.3 приведена эта запись. Из нее можно заключить, что

принадлежит1
ведет себя точно так же, как и
принадлежит
. Он просматривает список элемент за элементом до тех пор, пока не найдет нужный или пока не кончится список.

Упражнения

3.1. (а) Используя отношение

конк
, напишите цель, соответствующую вычеркиванию трех последних элементов списка L, результат — новый список L1. Указание: L — конкатенация L1 и трехэлементного списка.

(b) Напишите последовательность целей для порождения списка L2, получающегося из списка L вычеркиванием его трех первых и трех последних элементов.

3.2. Определите отношение

последний( Элемент, Список)

так, чтобы

Элемент
являлся последним элементом списка
Список
. Напишите два варианта определения: (а) с использованием отношения
конк
, (b) без использования этого отношения.

3.2.3. Добавление элемента

Наиболее простой способ добавить элемент в список — это вставить его в самое начало так, чтобы он стал его новой головой. Если X — это новый элемент, а список, в который X добавляется — L, тогда результирующий список — это просто

[X | L]

Таким образом, для того, чтобы добавить новый элемент в начало списка, не надо использовать никакой процедуры. Тем не менее, если мы хотим определить такую процедуру в явном виде, то ее можно представить в форме такого факта:

добавить( X, L, [X | L] ).

3.2.4. Удаление

элемента

Удаление элемента X из списка L можно запрограммировать в виде отношения

удалить( X, L, L1)

где L1 совпадает со списком L, у которого удален элемент X. Отношение

удалить
можно определить аналогично отношению принадлежности. Имеем снова два случая:

(1) Если X является головой списка, тогда результатом удаления будет хвост этого списка.

(2) Если X находится в хвосте списка, тогда его нужно удалить оттуда.

удалить( X, [X | Хвост], Хвост).

удалить( X, [Y | Хвост], [Y | Хвост1] ) :-

 удалить( X, Хвост, Хвост1).

как и

принадлежит
, отношение
удалить
по природе своей недетерминировано. Если в списке встречается несколько вхождений элемента X, то
удалить
сможет исключить их все при помощи возвратов. Конечно, вычисление по каждой альтернативе будет удалять лишь одно вхождение X, оставляя остальные в неприкосновенности. Например:

?- удалить( а, [а, b, а, а], L].

L = [b, а, а];

L = [а, b, а];

L = [а, b, а];

no
(нет)

При попытке исключить элемент, не содержащийся в списке, отношение

удалить
потерпит неудачу.

Отношение

удалить
можно использовать в обратном направлении для того, чтобы добавлять элементы в список, вставляя их в произвольные места. Например, если мы хотим во все возможные места списка
[1, 2, 3]
 вставить атом
а
, то мы можем это сделать, задав вопрос: "Каким должен быть список L, чтобы после удаления из него элемента
а
 получился список 
[1, 2, 3]
?"

?- удалить( а, L, [1, 2, 3] ).

L = [а, 1, 2, 3];

L = [1, а, 2, 3];

L = [1, 2, а, 3];

L = [1, 2, 3, а];

(нет)

Вообще операция по внесению X в произвольное место некоторого списка

Список
, дающее в результате
БольшийСписок
, может быть определена предложением:

внести( X, Список, БольшийСписок) :-

 удалить( X, БольшийСписок, Список).

Поделиться:
Популярные книги

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Бастард Императора. Том 8

Орлов Андрей Юрьевич
8. Бастард Императора
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Бастард Императора. Том 8

Чужая дочь

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Чужая дочь

Эра Мангуста. Том 2

Третьяков Андрей
2. Рос: Мангуст
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эра Мангуста. Том 2

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Помещицы из будущего

Порохня Анна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Помещицы из будущего

Шлейф сандала

Лерн Анна
Фантастика:
фэнтези
6.00
рейтинг книги
Шлейф сандала

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Император

Рави Ивар
7. Прометей
Фантастика:
фэнтези
7.11
рейтинг книги
Император

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Князь Серединного мира

Земляной Андрей Борисович
4. Страж
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Князь Серединного мира

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри