Чтение онлайн

на главную - закладки

Жанры

Программируя Вселенную. Квантовый компьютер и будущее науки
Шрифт:

В рассказе жизнь продолжается. Люди исследуют галактику, потом другие галактики, потом становятся бессмертными (в конце концов, это научная фантастика), следующие версии Мультивака становятся все более мощными, в конечном счете пронизывая всю ткань Вселенной. Люди продолжают задавать компьютеру тот же вопрос – вопрос о том, как обратить второе начало термодинамики, и компьютер дает все тот же ответ. Наконец, когда весь человеческий разум вместе со всем остальным содержимым Вселенной оказывается включенным в окончательное воплощение Мультивака, универсальный компьютер AC наконец понимает, о чем его спрашивали на протяжении миллиардов лет, и говорит: «ДА БУДЕТ СВЕТ!»

Обратите внимание, в рассказе Азимова Вселенная превращается в компьютер постепенно, она не является компьютером с самого начала. Нас же интересует, как Вселенная стала вычислять с самого

начала. Связи между вычислением и физикой в начале 1960-х гг. изучал Рольф Ландауэр из IBM. Идею о том, что вычисления могут происходить в соответствии с фундаментальным свойством законов физики сохранять информацию, выдвинули в 1970-х гг. Чарльз Беннетт из IBM, а также Эдвард Фредкин, Томмазо Тоффоли и Норман Марголюс из Массачусетского технологического института. Идею о том, что Вселенная может быть своего рода компьютером, независимо друг от друга предложили в 1960-х гг. Фредкин и Конрад Цузе – первый человек, который построил современный электронный компьютер. Фредкин и Цузе предположили, что Вселенная может быть чем-то вроде классического компьютера, так называемым клеточным автоматом, состоящим из регулярного массива битов, взаимодействующих со своими соседями. Позже идеи Фредкина и Цузе развивал и углублял Стивен Вольфрам.

Идея использовать клеточные автоматы как основу для теории Вселенной весьма привлекательна. Проблема этого подхода состоит в том, что классические компьютеры скверно воспроизводят свойства квантов, например запутанность. Более того, как мы отмечали, чтобы смоделировать крошечный квантово-механический фрагмент Вселенной, потребовался бы классический компьютер размером с саму Вселенную. Поэтому так трудно представить, чтобы Вселенная могла оказаться классическим компьютером, наподобие клеточного автомата. Если она действительно такова, то огромная часть ее вычислительного аппарата недоступна наблюдению.

Физические ограничения вычислений

Если мы знакомы с квантовой механикой и квантовыми вычислениями, то на удивление легко определить, какой объем вычислений может выполнять любая физическая система. Начнем с того, что все физические системы содержат информацию. Рассмотрим электрон, который может быть найден в одном из двух мест, «здесь» или «там». Электрон, который может быть или «здесь», или «там», хранит один бит информации. (Как сказал Рольф Ландауэр, «информация – величина физическая».) Когда электрон перемещается отсюда туда, его бит инвертируется. Другими словами, всякий раз, когда физическая система изменяет свое состояние, – всякий раз, когда что-то происходит, – информация, которую хранила эта система, преобразуется и обрабатывается. (Обработка информации – тоже физический процесс.)

Тем, где могут находиться электроны и как они перемещаются отсюда туда, управляют законы физики. Законы физики определяют, сколько информации может содержать та или иная физическая система и как быстро эта информация может быть обработана. Физика устанавливает окончательный предел мощности компьютеров. В статье «Абсолютные физические пределы вычислений» (Ultimate Physical Limits to Computation) я показал, что вычислительная мощность любой физической системы может быть подсчитана как функция количества доступной системе энергии, вместе с размером этой системы {12} . В качестве примера я применил эти пределы, чтобы определить максимальную вычислительную мощность килограмма вещества, ограниченного литровым объемом. Я представил себе ноутбук, который весит примерно килограмм и занимает примерно литр пространства. Этот портативный компьютер весом в один килограмм и объемом в один литр я назвал «абсолютным ноутбуком». В следующий раз, когда вы решите купить новый ноутбук, сначала сравните его с абсолютным.

12

Nature, Vol. 406 (Aug. 31, 2000): 1047–1054.

Какова мощность абсолютного ноутбука? Первое фундаментальное ограничение вычислительных характеристик связано с энергией. Энергия ограничивает скорость. Например, рассмотрим наш однобитовый электрон, который перемещается отсюда туда. Чем больше энергии у электрона, тем быстрее он может выполнить перемещение и тем быстрее он может инвертировать свой бит.

«Абсолютный ноутбук» – это компьютер массой один килограмм и объемом один литр, где каждая элементарная частица используется для целей вычисления. Абсолютный ноутбук может выполнить десять миллионов

миллиардов миллиардов миллиардов миллиардов миллиардов (1052) логических операций в секунду с десятью тысячами миллиардов миллиардов миллиардов (1031) битов.

Максимальную частоту, с которой бит может менять свое состояние, определяет одна полезная теорема – теорема Марголюса – Левитина. Норм Марголюс, как уже было отмечено, – один из пионеров физики вычислений; вместе со своим научным руководителем Томмазо Тоффоли из Массачусетского технологического института он показал, что простые физические системы, вроде сталкивающихся друг с другом атомов, могут выполнять универсальные цифровые вычисления. Лев Левитин из Бостонского университета [33] одним из первых стал использовать законы физики для вычисления пропускной способности каналов связи, например оптоволоконных кабелей, для передачи информации. Эти ученые объединили свои усилия и в 1998 г. опубликовали свою теорему {13} .

33

Бывший сотрудник Института проблем передачи информации Лев Борисович Левитин уехал из СССР в 1973 г. – Прим. ред.

13

Norman Margolus and Lev B. Levitin, «The Maximum Speed of Dynamical Evolution», Physica D, Vol. 120 (1998): 188–195.

Теорема Марголюса – Левитина гласит, что максимальная частота, с которой физическая система (электрон, например) может переходить из одного состояния в другое, пропорциональна энергии системы; чем больше доступной энергии, тем меньше времени нужно электрону, чтобы перейди отсюда туда. Эта теорема очень общая. Для нее несущественно, какая система хранит и обрабатывает информацию; важно только, сколько энергии есть в системе, чтобы обрабатывать эту информацию. Рассмотрим, например, атомы и электроны в моем компьютере. Их температура немного выше комнатной. Каждый атом и электрон раскачиваются, и количество энергии, связанной с типичными колебаниями, остается одним и тем же для атома и для электрона. Энергия на одно колебание просто пропорциональна температуре, независимо от того, говорим мы об атоме или об электроне. Следовательно, частота, с которой электрон в компьютере может перемещаться от одного состояния к другому, отсюда туда, или от 0 к 1, – такая же, что и скорость, с которой атом может переходить из одного состояния в другое. Электроны и атомы инвертируют свои биты с одной и той же частотой.

Теорема Марголюса – Левитина дает метод для вычисления максимальной частоты, с которой бит может менять свое состояние. Возьмем количество энергии, доступной для инвертирования бита, умножим ее на 4 и разделим на постоянную Планка. В результате мы получим число возможных инверсий бита за секунду. Применяя эту формулу к атомам и электронам в моем компьютере, мы выясним, что каждый колеблющийся атом и электрон изменяют свое состояние и свой бит примерно 30 трлн (30 х 1012) раз в секунду.

Скорость, с которой атомы и электроны инвертируют свои биты, обычно намного больше, чем скорость, с которой это делает обычный компьютер. Компьютер, на котором я печатаю текст, вкладывает в зарядку и разрядку конденсаторов, которые хранят его биты, в миллиард раз больше энергии, чем используют атомы и электроны на свои колебания и на инверсию своих битов. Но мой компьютер действует в 10 000 раз медленнее атомов. Медлительность моего компьютера не противоречит теореме Марголюса – Левитина. Эта теорема дает только верхний предел того, как быстро может менять свое состояние бит. Бит может делать это медленнее максимальной скорости, допускаемой теоремой. Квантовый компьютер, однако, всегда инвертирует свои биты с максимальной скоростью.

Теорема Марголюса – Левитина устанавливает предел количества элементарных операций (опов), которые может выполнять бит в секунду. Предположим, что мы оставим неизменным количество энергии, доступное для изменения состояния битов, но теперь разделим эту энергию между двумя битами. Каждый из этих двух битов получит половину энергии нашего первоначального бита и сможет работать вдвое медленнее. Но общее количество переходов в секунду останется тем же.

Если разделить количество доступной энергии между десятью битами, то каждый из них будет менять свое состояние в десять раз медленнее, но общее количество переходов в секунду останется тем же. Так же как она безразлична к размерам системы, эта теорема не «заботится» о том, откуда берется доступная энергия. Максимальное количество операций в секунду – это энергия E, умноженная на 4 и деленная на постоянную Планка.

Поделиться:
Популярные книги

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Черный дембель. Часть 1

Федин Андрей Анатольевич
1. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 1

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Попаданка в академии драконов 4

Свадьбина Любовь
4. Попаданка в академии драконов
Любовные романы:
любовно-фантастические романы
7.47
рейтинг книги
Попаданка в академии драконов 4

Боги, пиво и дурак. Том 6

Горина Юлия Николаевна
6. Боги, пиво и дурак
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Боги, пиво и дурак. Том 6

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Сделай это со мной снова

Рам Янка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сделай это со мной снова

Болотник 2

Панченко Андрей Алексеевич
2. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 2

Камень Книга двенадцатая

Минин Станислав
12. Камень
Фантастика:
боевая фантастика
городское фэнтези
аниме
фэнтези
5.00
рейтинг книги
Камень Книга двенадцатая

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Надуй щеки! Том 4

Вишневский Сергей Викторович
4. Чеболь за партой
Фантастика:
попаданцы
уся
дорама
5.00
рейтинг книги
Надуй щеки! Том 4