Простое начало. Как четыре закона физики формируют живой мир
Шрифт:
Если зайти с другой стороны, можно поинтересоваться, как быстро информация передается по химическому синапсу. Если при активации одного нейрона электрический сигнал проходит по нему до самой дальней части, новость о его активации должна передаваться следующей клетке в цепи – например, другому нейрону или мышечной клетке. Как мы узнали, на передачу этой эстафетной палочки клетки тратят около микросекунды. Разумеется, это грубая оценка. Строго говоря, нам нужно спрашивать, за какое время синаптическую щель преодолеет пороговое количество случайных блуждающих, а не одна среднестатистическая молекула. Но так или иначе речь здесь идет о микросекундах, то есть миллионных долях секунды. Учитывая физические размеры синапса, мы не видим причин, почему бы времени требовалось значительно больше – например, тысячные секунды, – и не видим физической возможности для того, чтобы времени тратилось
Мне с детства было интересно, чем определяется скорость мышления – почему минута кажется минутой, а не годом и почему не получается прочувствовать каждую миллисекунду наших переживаний. Скорость общения нейронов через химический синапс неизбежно определяется броуновским движением. Существует еще пара способов передачи информации в мозге, и динамика у каждого из них своя. Но все пути переноса биологической информации так или иначе регулируются молекулярными потоками с их неотъемлемой компонентой – броуновским движением, помогающим задавать скорость работы нашего мозга.
Микросекундные сроки, характерные для химического синапса, довольно малы и, несомненно, соответствуют нашим нуждам. Любопытно, однако, сравнить их со скоростью работы современных компьютеров, которые затрачивают на операцию около наносекунды, то есть одной миллиардной секунды. Мой ноутбук функционирует многократно быстрее моего мозга. Вместо движения молекул он использует движение гораздо более мелких частиц, электронов, да еще и перемещает их принудительно с помощью электрических полей. В сравнении с ним мой мозг работает медленно, но схема взаимодействий моих нейронов гораздо сложнее схемы связей между транзисторами в центральном процессоре ноутбука3. Нейронная архитектура позволяет параллельно совершать головокружительное количество вычислений в разных группах клеток, а не выполнять их строго по очереди. Связность и параллельность сильно помогают в решении концептуально сложных задач. Любопытно представить, что случится, когда машины превзойдут нас и по скорости вычислений, и по сложности сети, ведь вполне вероятно, что этот день уже не за горами.
В приведенном выше примере нейрон просто высвобождает нейромедиаторы, точно зная, что за приемлемое время они диффундируют до мишени. Подобным образом броуновское движение используют и другие клетки. Как помните, в главе 4 мы говорили о бактерии, которая любит лактозу: lac– репрессор может как встретиться, так и не встретиться с лактозой, поглощенной бактерией из внешней среды, и от этого зависит, свяжется ли он с нужным участком ДНК, чтобы остановить производство белков, расщепляющих лактозу. Как lac– репрессор находит ту самую ДНК? Опять же ничего особенного, никаких направляющих он не использует. Белок просто блуждает. Благодаря малому размеру его хаотичное движение довольно интенсивно, и репрессор способен преодолеть расстояние в микрометр, близкое к диаметру типичной бактерии, за сотую долю секунды. Чтобы достичь определенной точки – например, своей ДНК-мишени, – он затратит больше времени, поскольку лишь единичные случайные траектории будут ему полезны. И все же для попадания в любую заданную точку ему хватает в среднем десятой доли секунды. Следовательно, нет ничего удивительного в том, что бактерия, получив информацию из окружающей среды, способна за доли секунды принять взвешенные решения.
Теперь представьте типичную эукариотическую клетку – например, один из ваших лейкоцитов. Его диаметр составляет около 10 микрометров, что в 10 раз больше диаметра типичной бактерии. Чтобы покрыть расстояние, равное диаметру лейкоцита, белку понадобится в 102, то есть в 100 раз больше времени. Найти нужную мишень, например промотор гена, ему будет сложнее. Оказывается, в среднем он должен затрачивать на это время, пропорциональное размеру клетки в кубе (10 x 10 x 10), то есть искать цель в лейкоците белок будет в 1000 раз дольше, чем в бактерии4. Вместо десятой доли секунды на реакцию уйдет почти две минуты – а это много!
Дабы не впасть в летаргию, эукариоты выбирают более активный подход и перемещают грузы с помощью моторных белков5. Мы уже знакомы с одним из них, кинетином, который одним концом захватывает заключенный в липидно-белковую оболочку материал, а другим шагает по микротрубочке.
Кинетин передвигается со средней скоростью около 2
Несмотря на активные исследования, никто пока не обнаружил подобные кинетину моторные белки в прокариотических клетках (бактериях и археях). С точки зрения биофизики это закономерно: не то чтобы бактерии не смогли развить их в ходе эволюции – они просто не испытывают в них необходимости. В малых масштабах броуновское движение происходит быстро, в крупных – медленно. Поскольку бактерии в большинстве своем малы, они могут спокойно положиться на случайность в удовлетворении своих внутренних транспортных потребностей.
Транспортировка вне бактерий и перемещение их самих тоже не обходятся без случайности. Большинство бактерий подвижны и могут, например, плавать в жидкости. Так, у E. coli есть несколько нитевидных жгутиков, при вращении которых в одну сторону организм движется вперед, а в другую – кувыркается [34] . Эти микробы постоянно пребывают в движении, и под микроскопом видно, как они снуют из стороны в сторону в чашке с водой.
34
У E. coli жгутики расположены по всему периметру клетки, и у каждого из них есть движущий элемент – ротор. Если ротор вращается против часовой стрелки, жгутики сплетаются в общий толстый жгут и работают скоординированно, толкая клетку вперед по относительно прямой линии; если ротор начинает вращаться по часовой стрелке, жгут расплетается и клетка недолго крутится на месте. Такие кувыркания ведут к смене направления дальнейшего прямолинейного движения. Эти два типа случайного движения постоянно чередуются, а частота их смены, способная корректировать направление, может зависеть от содержания в среде важных для бактерий веществ.
Можно подумать, что бактерии плавают ради поглощения пищевых частиц, подобно миниатюрным усатым китам, собирающим криль на своем пути, но физика это опровергает. E. coli плавает со скоростью около 10 микрометров в секунду, а значит, если бы в микрометре от нее (то есть на расстоянии, сравнимом с длиной ее тела) находилась пища, бактерии понадобилось бы около десятой доли секунды, чтобы к ней подплыть. Их пища – это сахара и другие молекулы размером менее одной тысячной микрометра, такие маленькие, что за миллисекунду могут преодолеть расстояние в целый микрометр. Будь вы бактерией, пища достигала бы вас путем диффузии гораздо быстрее, чем вы до нее доплывали бы! Как отметил физик Эдвард Пёрселл, «вы можете носиться как угорелый, но тот парень, что спокойно сидит в ожидании диффузии», получит не меньше.
Зачем же тогда им плавать? Бактерии вроде E. coli измеряют концентрацию питательных веществ в окружающей среде по изменению загруженности клеточных рецепторов их молекулами и перемещаются в направлении повышения концентрации. И снова процитирую Пёрселла: «(Бактерия) может находить места, где пища лучше или где ее больше. То есть она движется не как пасущаяся на лугу корова, а стремится туда, где луга зеленее». Благодаря многолетним исследованиям мы теперь можем в подробностях описать, как E. coli оценивает обстановку и принимает решения: как обнаружение питательных веществ поэтапно воздействует на белки, контролирующие жгутики, чтобы те позволяли клетке дольше плыть прямо по градиенту концентрации питательных веществ и чаще крутиться при движении в менее удачном направлении. Механизмы такого же типа работают у очень разных бактерий, включая тех, что привыкли прокладывать себе путь в организмы животных6. Похожие системы характерны и для многих эукариотических клеток – например, иммуноцитов, мигрирующих к ранам.