Простое начало. Как четыре закона физики формируют живой мир
Шрифт:
Обмен кислорода и углекислого газа у всех живых существ происходит на какой-то поверхности, причем скорость обмена ограничена располагаемой площадью поверхности. В этом нет ничего сложного: молекулы газа при переходе из одной среды в другую – например, из воздуха внутрь кровеносного сосуда – вынуждены преодолевать границу между средами, поэтому поток молекул пропорционален площади поверхности этой границы. Общая потребность в кислороде определяется объемом существа (не учитывая нюансов, о которых мы поговорим в следующей главе), поскольку каждая его клетка расходует кислород на химический процесс дыхания. У маленького животного вроде муравья площади поверхности внутренних трубочек хватает для газообмена с тканями, а площади поверхности тела достаточно для поглощения необходимого объема кислорода.
Теперь
Все крупные растения и животные, включая вас, решают эту проблему отказом от изометрии. Вместо того чтобы сохранять подобие очертаний, крупные организмы принимают формы с гораздо большей площадью поверхности для транспортировки газов, чтобы удовлетворять потребности в кислороде, растущие по мере увеличения объема и клеточной массы.
Маленькие фотосинтезирующие бактерии имеют гладкую округлую форму. Деревья, напротив, сильно ветвятся и обрастают множеством листьев, на поверхности которых происходит газообмен. Вы тоже ветвитесь, но только внутри: воздухоносные пути в ваших легких выглядят как каскад из все более тонких веточек, суммарно образующих огромную площадь поверхности. Часто говорят, что объем ваших легких сопоставим с несколькими теннисными мячиками, а площадь – с целым теннисным кортом.
Работа ваших органов тоже опирается на масштабирование. Ваши легкие раздуваются и сдуваются, продвигая газы внутрь организма и наружу. Муравью же хватает отверстий на поверхности тела. Хотя муравьи и другие крупные насекомые могут расширять и сжимать части своих тел, чтобы активно прокачивать воздух, основным режимом транспортировки газов – и единственным у мелких насекомых – остается пассивная диффузия. Более крупным животным ее недостаточно: как мы узнали из главы 6, на большие расстояния молекулы диффундируют очень медленно, поэтому вы задохнетесь, если перестанете прокачивать воздух.
Ваше сердце энергично проталкивает насыщенную кислородом кровь по другой разветвленной сети, пронизывающей ваше тело. Муравью это ни к чему: его малые размеры облегчают внутренний газообмен. Небольшое существо может эксплуатировать предсказуемую случайность броуновского движения: заходя через дыхальца, воздух свободно блуждает по ходам внутри организма. Вспомним снова главу 6: при случайном блуждании частица – например, молекула кислорода – в среднем преодолевает расстояние, соответствующее квадратному корню из времени ее движения. Если перевернуть это уравнение и обратиться к языку масштабирования, получится, что время движения увеличивается пропорционально квадрату длины. Если существо в 1000 раз больше муравья, на диффузию в нем уйдет в 10002 = 1 миллион раз больше времени. Вместо того чтобы терпеливо ждать насыщения тканей в миллион раз дольше, крупные животные вроде нас переносят кислород в крови, прокачивая ее по кровеносной системе и подводя достаточно близко к каждой клетке, чтобы дело быстренько завершила диффузия.
Впрочем, крупным существам можно насыщаться кислородом и не прибегая к развитию органов дыхания с обширной поверхностью: для этого им нужно жить в очень богатой кислородом среде.
Поверхности влияют на многие аспекты формы животных. Лоси, живущие в холодных регионах, крупнее. Хоть белые медведи и близкие родственники бурых, они массивнее своих южных собратьев. То, что представители одного и того же вида бывают крупнее в более холодных широтах, замечали векaми. Вероятно, дело в площади поверхности. Если вы теплокровное животное, обитающее в холоде, слишком большая поверхность вашего тела становится обузой: из-за нее вы теряете больше тепла. Поскольку площадь поверхности растет пропорционально квадрату длины, а объем – пропорционально кубу, отношение площади поверхности к объему уменьшается по мере увеличения размера. Допустим, животное вырабатывает столько же тепла, сколько теряет через кожу. Если его размеры изометрически удвоить, оно будет производить в 8 раз больше тепла благодаря возросшей в 8 раз массе, зато скорость потери тепла увеличится лишь в 4 раза. Следовательно, животное будет либо перегреваться, либо – что более реалистично – требовать (и потреблять) меньше калорий на поддержание температуры тела. Получается, что у крупного животного в холоде будет больше шансов выжить, а значит, увеличение размера дает эволюционное преимущество. При прочих равных большим животным в холоде живется легче.
Животным в жарком климате, напротив, грозит перегрев, и им полезнее большая площадь поверхности, облегчающая отдачу тепла. Отношение площади поверхности к объему при малых размерах больше, поэтому при прочих равных мелким животным в жарких местах живется легче.
Разумеется, можно пойти и по пути отказа от изометрии: так произошло с ушами слона, развившими гигантскую площадь поверхности. Однако внутри вида формы не склонны меняться столь радикально – отсюда и общее правило, сформулированное в XIX веке биологом Карлом Бергманом: размер тела теплокровных животных в холодном климате обычно больше, чем в теплом. Сейчас оно известно как правило Бергмана.
Пока мы рассматривали лишь те примеры, где связанные с поверхностями закономерности влияют на форму животных. Но они же влияют и на поведение, определяя, что животным под силу, а что – нет.
По водной глади пруда снуют водомерки и другие насекомые. Они делают это с той же легкостью, с какой вы ходите по лужайке. Почему же вы не можете гулять по воде? Секрет водомерки не в строении ее ног, а в размере. Способности насекомого проистекают из масштабирования, а именно – из масштабирования, связанного с такой силой, как поверхностное натяжение.
Эта сила возникает на поверхности любой жидкости. Какой бы ни была жидкость, составляющие ее молекулы притягиваются друг к другу. Это неотъемлемое свойство жидкостей: если бы молекулы взаимно не притягивались, они сформировали бы скорее газ. Каждая молекула воды хочет находиться рядом с ей подобными. Каждая молекула масла хочет находиться с другими такими же. У молекул на поверхности жидкости (вроде того же пруда) примерно вдвое меньше соседей, чем у пребывающих в ее толще. Если уподобить молекулы людям, можно сказать, что обитатели поверхности несчастливы, и жидкость как целое стремится минимизировать площадь своей поверхности, чтобы несчастных молекул было как можно меньше. Более того, жидкость противится любым процессам, увеличивающим площадь ее поверхности, и поэтому возникает то самое поверхностное натяжение. Мыльные пузыри, жидкости в космосе и капли в водно-масляной смеси принимают сферическую форму именно под действием этой силы, поскольку сфера – это трехмерное тело с минимальной площадью поверхности при заданном объеме. Если же рассматривать воду в ведре или в пруду, то на нее действует гравитация и дополнительные ограничения в виде стенок резервуара, которые вместе с плоским пятном контакта вода – воздух минимизируют площадь поверхности. Любую жидкую поверхность можно считать постоянно натянутой, стремящейся максимально сократить свою площадь с учетом ограничений, накладываемых объемом жидкости и другими факторами.