Чтение онлайн

на главную - закладки

Жанры

Простое начало. Как четыре закона физики формируют живой мир
Шрифт:

Живые существа постоянно обрабатывают информацию, закодированную в ДНК: они копируют ее при делении клеток и рутинно считывают, транскрибируя и транслируя гены в РНК и белки. Результаты этих процессов зависят от последовательности нуклеотидов A, Ц, Г и T, то есть сами процессы в каком-то смысле сводятся к чтению молекул ДНК. Примерно 4 миллиарда лет других методов чтения ДНК не существовало. Теперь мы изобрели радикально новые инструменты – быстрые, дешевые, едва ли не сказочно эффективные, – и они открывают нам доступ к информации, зашифрованной в каждом организме. Эта поразительная технологическая трансформация случилась потому, что мы серьезно подошли к осязаемым физическим характеристикам биомолекул и наладили их взаимодействие с другими аспектами наших технологий. Ну а мы теперь посмотрим, что можно узнать из информации, зашифрованной в ДНК.

Глава 14. Генетические комбинации

Информация, зашифрованная

во всевозможных организмах, включая людей, теперь у нас на ладони благодаря освоению чудесного искусства чтения ДНК. Что же мы можем из нее извлечь? Мы уже задавали этот вопрос в первой части книги, когда рассматривали природу генов и регуляцию их работы. Нам хочется думать, что наше генетическое содержимое отражается в характеристиках организма напрямую: ведь так удобно просто сопоставлять, каким генным вариациям соответствуют вариации в интересующей характеристике. Но даже из первой части понятно, что на самом деле все не так просто: биологическая активность определяется не только генами, но и зашифрованной в геноме регуляторной схемой, которая включает и выключает их транскрипцию. Дальше мы увидим, что природа еще сложнее, чем мы могли подумать: на многие значимые для нас признаки и заболевания влияют тысячи разных областей генома, сплетая плотную паутину связей, распутать которую очень сложно.

И здесь на помощь приходит все та же предсказуемая случайность: она дает нам теоретические и практические инструменты для работы с генетической информацией. Эти инструменты настолько эффективны, что мы часто можем обходиться без секвенирования полных геномов и пользоваться куда менее подробными, зато недорогими генетическими картами. Знания о случайности и предсказуемости критически важны для осмысления технологий, которые уже сейчас существенно влияют на наш мир, вторгаясь в медицинскую, промышленную и этическую повестки, о чем мы тоже поговорим.

Где искать ген высокого роста?

В зонтичную категорию «генетических» попадает множество характеристик, которые если не полностью, то хотя бы частично зависят от нуклеотидной последовательности, унаследованной нами от родителей. Иногда, в том числе и в случае нескольких тяжелых заболеваний, очень просто найти связь между тем, что происходит в организме, и тем, какой участок ДНК за это отвечает. Так бывает, когда проблема заключается всего в одном гене. Хороший пример тому – муковисцидоз.

У всех нас в легких выделяется секрет, из которого состоит жидкая пленка, описанная в главе 11. После секреции эпителиальные клетки выталкивают его по дыхательным путям вверх, ко рту, избавляясь так от лишней жидкости, грязи, пыльцы, бактерий и прочих частиц, которые мы то и дело вдыхаем. У людей, страдающих муковисцидозом, секрет слишком вязкий и потому застаивается в легких, повышая их восприимчивость к бактериальным инфекциям. Виноват в этом один-единственный ген, CFTR, кодирующий один белок – регулятор трансмембранной проводимости, связанный с муковисцидозом. Этот канальный белок, пронизывая клеточные мембраны, проводит через них ионы хлора и бикарбоната [58] . У больных муковисцидозом мутация в гене CFTR изменяет структуру этого регулятора. В итоге концентрации ионов по обе стороны мембраны оказываются не такими, какими должны быть, что заставляет воду уходить из секрета, его вязкость повышается, и у больного появляются характерные симптомы.

58

Белок CFTR может вносить вклад в патогенез муковисцидоза и за счет других своих функций, влияющих как на свойства эпителиального секрета (в частности, CFTR регулирует транспорт ионов натрия по другому каналу), так и на работу иммунной системы (Hanssens L. S. et al. CFTR Protein: Not Just a Chloride Channel? Cells. 2021; 10 (11): 2844).

Если сравнивать с муковисцидозом, на другом конце шкалы генетической предопределенности расположились признаки вроде роста. На рост влияют и негенетические факторы – больше всего питание, – но генетический материал, полученный вами в момент зачатия, сильнее определяет конечные показатели, каких вы можете достичь. Гена роста, впрочем, не существует. В геноме человека есть десятки тысяч изменчивых позиций, где тот или иной тип нуклеотида в какой-то мере влияет на рост. Они находятся не только в генах, но и в последовательностях, которые, образно говоря, дергают гены за ниточки – регулируют их экспрессию или упаковку ДНК (см. главу 3).

Пример с ростом гораздо более типичен, чем с муковисцидозом, – по крайней мере в категории сложных признаков и заболеваний, к которым сегодня приковано наше внимание. Нет единственного гена, наделяющего вас предрасположенностью к раку толстой кишки, и даже гена, задающего цвет волос: это определяется перекличкой множества участков генома. И удивляться тут нечему.

В геноме человека всего лишь 20 тысяч белок-кодирующих генов, а сложнейшее устройство нашего организма невозможно описать в 20 тысячах белковых инструкций. Поэтому было бы странно ожидать, что каждой характеристике досталось по собственному гену. Белок, кодируемый тем или иным геном, может участвовать в формировании множества разных признаков, равно как и отдельный признак может определяться согласованной активностью множества разных генов. Но, как мы узнали из глав 3 и 4, важнее всего то, что 99 % генома, которые и не гены вовсе, влияют на работу генов даже мощнее, регулируя их включение и выключение.

Давайте подробнее разберем рост, поскольку эта характеристика всем нам знакома и прекрасно иллюстрирует, что может и чего не может сообщить нам генетика. На рост влияют гены и среда, в которой развивается человек, причем факторы эти – предрешенное и условное – не исключают друг друга.

В среднем люди раньше были ниже. Средний рост француза, родившегося в 1800 году, составлял 164 сантиметра, а родившегося в 1980-м – почти 176,5. Средний рост японки, появившейся на свет в 1900 году, составлял 143 сантиметра, а ее правнучка, рожденная в 1980-м, могла быть на 15 сантиметров выше. Такая динамика наблюдалась по всему миру, особенно после перехода стран на современную экономику. В этот вековой или двухвековой промежуток загадочные эпидемии не выкашивали только невысоких и не мутировал так резко наш геном. Мы подросли в первую очередь благодаря изменению питания. Современный француз ежедневно получает вдвое больше калорий, чем мог себе позволить его предок в начале XIX века1. К калориям все не сводится, однако обилие энергии, получаемой из рациона, сопряжено с изобилием питательных веществ, и вместе они позволяют человеческому телу полностью раскрыть заложенный в нем потенциал2. На рост влияют и другие негенетические факторы вроде детских болезней и загрязнителей окружающей среды, воздействие которых на огромную часть человечества за последние столетия заметно уменьшилось.

Теперь рассмотрим современное население типичной промышленно развитой страны. Даже если разделить взрослых по половому признаку, в каждой группе окажутся люди разного роста. Более того, мы прекрасно знаем, что у высоких родителей дети чаще тоже бывают высокими. Конечный рост детей обычно схож с ростом их биологических родителей, а не случайно выбранных взрослых или приемных родителей. Иными словами, генетика важна. Но насколько? И какие области генома ответственны за рост?

В прошлой главе мы познакомились с превосходными инструментами для чтения ДНК. Для изучения редких черт и малозаметных вариаций, как и для всеобъемлющего описания, полезно секвенировать полный геном. Рост и многие другие признаки, однако, достаточно выразительны и устойчивы, а потому к ним можно применять и методы попроще. Ваш геном больше чем на 99 % совпадает с моим, поэтому можно сосредоточиться лишь на тех областях, где есть расхождения. Рассмотрим одно из немногих различий – точку, где у большинства людей стоит, скажем, нуклеотид A, но у немалой доли популяции его заменяет Ц. Геномные позиции, где относительно часто встречается такая неоднозначность, называют однонуклеотидными полиморфизмами (ОНП или SNP – «спипы» в лабораторном жаргоне). В геноме человека несколько миллионов типичных ОНП, и слово «типичный» здесь означает, что по меньшей мере у 1 % населения это место занимает более редкий нуклеотид. Несколько миллионов – это много, но все же не слишком в сравнении с 3 миллиардами нуклеотидов полного генома человека, поэтому мы умеем находить такие ОНП без особого труда.

Например, мы можем закрепить на микроскопических шариках короткие однонитевые фрагменты ДНК, комплементарные доминирующей форме ОНП, и использовать их как зонды, наблюдая, свяжется ли с шариками измельченная и амплифицированная ДНК исследуемого человека. Если да, мы поймем, что у этого человека типичный вариант нуклеотида в интересующей точке генома, если же нет – будем знать, что у него вариант более редкий [59] . Я не вдаюсь в детали, да и технологии на рынке доступны разные, важнее здесь другое: в каждой из них нашли отражение изящные методы, описанные в прошлой главе. В них используются уникальные преимущества флуоресцентных нуклеотидов, ДНК-полимераз, серийных заготовок в виде стеклянных подложек, усеянных миллионами шариков с миллионами клонов ДНК на каждом, и многого другого. Мы получаем результат стоимостью до 100 долларов в пересчете на один тест – меньше, чем многие тратят на пару обуви, – который показывает нам совокупность ОНП, характеризующую геном, а следовательно, и основную долю генетических вариаций у индивида.

59

Если известно, что конкретный вариант ОНП – например, А вместо доминирующего в популяции Ц – связан с какой-то болезнью, при оценке предрасположенности к ней «зондировать» проще именно на патологический вариант.

Поделиться:
Популярные книги

Товарищ "Чума" 2

lanpirot
2. Товарищ "Чума"
Фантастика:
городское фэнтези
попаданцы
альтернативная история
5.00
рейтинг книги
Товарищ Чума 2

Дело Чести

Щукин Иван
5. Жизни Архимага
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Дело Чести

Кодекс Крови. Книга I

Борзых М.
1. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга I

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Час Презрения

Сапковский Анджей
4. Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Час Презрения

Дурная жена неверного дракона

Ганова Алиса
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Дурная жена неверного дракона

Эволюционер из трущоб. Том 4

Панарин Антон
4. Эволюционер из трущоб
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Эволюционер из трущоб. Том 4

Хозяйка собственного поместья

Шнейдер Наталья
1. Хозяйка
Фантастика:
фэнтези
5.00
рейтинг книги
Хозяйка собственного поместья

Запределье

Михайлов Дем Алексеевич
6. Мир Вальдиры
Фантастика:
фэнтези
рпг
9.06
рейтинг книги
Запределье

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Пятьдесят оттенков серого

Джеймс Эрика Леонард
1. Пятьдесят оттенков
Проза:
современная проза
8.28
рейтинг книги
Пятьдесят оттенков серого

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4