Простое начало. Как четыре закона физики формируют живой мир
Шрифт:
Живые существа постоянно обрабатывают информацию, закодированную в ДНК: они копируют ее при делении клеток и рутинно считывают, транскрибируя и транслируя гены в РНК и белки. Результаты этих процессов зависят от последовательности нуклеотидов A, Ц, Г и T, то есть сами процессы в каком-то смысле сводятся к чтению молекул ДНК. Примерно 4 миллиарда лет других методов чтения ДНК не существовало. Теперь мы изобрели радикально новые инструменты – быстрые, дешевые, едва ли не сказочно эффективные, – и они открывают нам доступ к информации, зашифрованной в каждом организме. Эта поразительная технологическая трансформация случилась потому, что мы серьезно подошли к осязаемым физическим характеристикам биомолекул и наладили их взаимодействие с другими аспектами наших технологий. Ну а мы теперь посмотрим, что можно узнать из информации, зашифрованной в ДНК.
Глава 14. Генетические комбинации
Информация, зашифрованная
И здесь на помощь приходит все та же предсказуемая случайность: она дает нам теоретические и практические инструменты для работы с генетической информацией. Эти инструменты настолько эффективны, что мы часто можем обходиться без секвенирования полных геномов и пользоваться куда менее подробными, зато недорогими генетическими картами. Знания о случайности и предсказуемости критически важны для осмысления технологий, которые уже сейчас существенно влияют на наш мир, вторгаясь в медицинскую, промышленную и этическую повестки, о чем мы тоже поговорим.
В зонтичную категорию «генетических» попадает множество характеристик, которые если не полностью, то хотя бы частично зависят от нуклеотидной последовательности, унаследованной нами от родителей. Иногда, в том числе и в случае нескольких тяжелых заболеваний, очень просто найти связь между тем, что происходит в организме, и тем, какой участок ДНК за это отвечает. Так бывает, когда проблема заключается всего в одном гене. Хороший пример тому – муковисцидоз.
У всех нас в легких выделяется секрет, из которого состоит жидкая пленка, описанная в главе 11. После секреции эпителиальные клетки выталкивают его по дыхательным путям вверх, ко рту, избавляясь так от лишней жидкости, грязи, пыльцы, бактерий и прочих частиц, которые мы то и дело вдыхаем. У людей, страдающих муковисцидозом, секрет слишком вязкий и потому застаивается в легких, повышая их восприимчивость к бактериальным инфекциям. Виноват в этом один-единственный ген, CFTR, кодирующий один белок – регулятор трансмембранной проводимости, связанный с муковисцидозом. Этот канальный белок, пронизывая клеточные мембраны, проводит через них ионы хлора и бикарбоната [58] . У больных муковисцидозом мутация в гене CFTR изменяет структуру этого регулятора. В итоге концентрации ионов по обе стороны мембраны оказываются не такими, какими должны быть, что заставляет воду уходить из секрета, его вязкость повышается, и у больного появляются характерные симптомы.
58
Белок CFTR может вносить вклад в патогенез муковисцидоза и за счет других своих функций, влияющих как на свойства эпителиального секрета (в частности, CFTR регулирует транспорт ионов натрия по другому каналу), так и на работу иммунной системы (Hanssens L. S. et al. CFTR Protein: Not Just a Chloride Channel? Cells. 2021; 10 (11): 2844).
Если сравнивать с муковисцидозом, на другом конце шкалы генетической предопределенности расположились признаки вроде роста. На рост влияют и негенетические факторы – больше всего питание, – но генетический материал, полученный вами в момент зачатия, сильнее определяет конечные показатели, каких вы можете достичь. Гена роста, впрочем, не существует. В геноме человека есть десятки тысяч изменчивых позиций, где тот или иной тип нуклеотида в какой-то мере влияет на рост. Они находятся не только в генах, но и в последовательностях, которые, образно говоря, дергают гены за ниточки – регулируют их экспрессию или упаковку ДНК (см. главу 3).
Пример с ростом гораздо более типичен, чем с муковисцидозом, – по крайней мере в категории сложных признаков и заболеваний, к которым сегодня приковано наше внимание. Нет единственного гена, наделяющего вас предрасположенностью к раку толстой кишки, и даже гена, задающего цвет волос: это определяется перекличкой множества участков генома. И удивляться тут нечему.
Давайте подробнее разберем рост, поскольку эта характеристика всем нам знакома и прекрасно иллюстрирует, что может и чего не может сообщить нам генетика. На рост влияют гены и среда, в которой развивается человек, причем факторы эти – предрешенное и условное – не исключают друг друга.
В среднем люди раньше были ниже. Средний рост француза, родившегося в 1800 году, составлял 164 сантиметра, а родившегося в 1980-м – почти 176,5. Средний рост японки, появившейся на свет в 1900 году, составлял 143 сантиметра, а ее правнучка, рожденная в 1980-м, могла быть на 15 сантиметров выше. Такая динамика наблюдалась по всему миру, особенно после перехода стран на современную экономику. В этот вековой или двухвековой промежуток загадочные эпидемии не выкашивали только невысоких и не мутировал так резко наш геном. Мы подросли в первую очередь благодаря изменению питания. Современный француз ежедневно получает вдвое больше калорий, чем мог себе позволить его предок в начале XIX века1. К калориям все не сводится, однако обилие энергии, получаемой из рациона, сопряжено с изобилием питательных веществ, и вместе они позволяют человеческому телу полностью раскрыть заложенный в нем потенциал2. На рост влияют и другие негенетические факторы вроде детских болезней и загрязнителей окружающей среды, воздействие которых на огромную часть человечества за последние столетия заметно уменьшилось.
Теперь рассмотрим современное население типичной промышленно развитой страны. Даже если разделить взрослых по половому признаку, в каждой группе окажутся люди разного роста. Более того, мы прекрасно знаем, что у высоких родителей дети чаще тоже бывают высокими. Конечный рост детей обычно схож с ростом их биологических родителей, а не случайно выбранных взрослых или приемных родителей. Иными словами, генетика важна. Но насколько? И какие области генома ответственны за рост?
В прошлой главе мы познакомились с превосходными инструментами для чтения ДНК. Для изучения редких черт и малозаметных вариаций, как и для всеобъемлющего описания, полезно секвенировать полный геном. Рост и многие другие признаки, однако, достаточно выразительны и устойчивы, а потому к ним можно применять и методы попроще. Ваш геном больше чем на 99 % совпадает с моим, поэтому можно сосредоточиться лишь на тех областях, где есть расхождения. Рассмотрим одно из немногих различий – точку, где у большинства людей стоит, скажем, нуклеотид A, но у немалой доли популяции его заменяет Ц. Геномные позиции, где относительно часто встречается такая неоднозначность, называют однонуклеотидными полиморфизмами (ОНП или SNP – «спипы» в лабораторном жаргоне). В геноме человека несколько миллионов типичных ОНП, и слово «типичный» здесь означает, что по меньшей мере у 1 % населения это место занимает более редкий нуклеотид. Несколько миллионов – это много, но все же не слишком в сравнении с 3 миллиардами нуклеотидов полного генома человека, поэтому мы умеем находить такие ОНП без особого труда.
Например, мы можем закрепить на микроскопических шариках короткие однонитевые фрагменты ДНК, комплементарные доминирующей форме ОНП, и использовать их как зонды, наблюдая, свяжется ли с шариками измельченная и амплифицированная ДНК исследуемого человека. Если да, мы поймем, что у этого человека типичный вариант нуклеотида в интересующей точке генома, если же нет – будем знать, что у него вариант более редкий [59] . Я не вдаюсь в детали, да и технологии на рынке доступны разные, важнее здесь другое: в каждой из них нашли отражение изящные методы, описанные в прошлой главе. В них используются уникальные преимущества флуоресцентных нуклеотидов, ДНК-полимераз, серийных заготовок в виде стеклянных подложек, усеянных миллионами шариков с миллионами клонов ДНК на каждом, и многого другого. Мы получаем результат стоимостью до 100 долларов в пересчете на один тест – меньше, чем многие тратят на пару обуви, – который показывает нам совокупность ОНП, характеризующую геном, а следовательно, и основную долю генетических вариаций у индивида.
59
Если известно, что конкретный вариант ОНП – например, А вместо доминирующего в популяции Ц – связан с какой-то болезнью, при оценке предрасположенности к ней «зондировать» проще именно на патологический вариант.