Простые вопросы. Книга, похожая на энциклопедию
Шрифт:
Сама идея принадлежит великому ученому Леонарду Эйлеру и сформулирована им лет за сто до изобретения телефона. Признаков нашей речи, оказывается, сравнительно немного. Эти признаки и считаются кодом речи. По мобильному телефону, таким образом, передается не речь, а лишь сообщение о ее признаках, то есть коды. На приемном конце наш мобильный аппарат — а по сути, специализированный компьютер — из кодов восстановит речь со всеми ее индивидуальными особенностями. Передача сообщения о кодах производится по радиоканалу, то есть с помощью электромагнитных волн. Чтобы электромагнитные волны переносили по эфиру сообщение, их параметры должны непрерывно подвергаться закономерному изменению. Это называется модуляцией. Способы, или алгоритмы модуляции
Интересно, что огромный вклад в развитие этих методов внесла знаменитая актриса Хеди Ламарр, занимавшаяся еще и научной деятельностью. В августе 1942 года ею и соавтором был получен патент США № 2 292 387 «Секретная система связи». Однако применение метода было отвергнуто из-за сложности в реализации, и лишь через 50 лет он стал основой для широкополосной связи, которая сегодня используется повсюду — от мобильных телефонов до Wi-Fi.
И теперь, когда мы идем на работу и берем с собой телефон, конечно, должны удивляться, какой он маленький и сколько в нем функций, но мы должны также помнить, какую концентрацию человеческой мысли держим в руках.
Как работает холодильник?
В 2000 году в мире было произведено более 135 млн различных холодильников.
Когда говорят о холодильниках, обычно на ум приходят те, что стоят на кухне. А между тем холодильники — это большой класс приборов, применяющихся для совершенно разных практических и научных целей. Холодильники служат не только для хранения продуктов и лекарств. Они нужны для хранения генетических материалов при сверхнизких температурах. Холодильники используют электронных элементов в компьютерах, для охлаждения приемников электромагнитных волн, когда надо принять слабые сигналы из космоса или слабое электромагнитное излучение человеческого тела при тепловизионном обследовании. Холодильники нужны и для охлаждения частей тела, включая мозг, при хирургических операциях. Даже кондиционер — это тоже холодильник.
Общий принцип работы холодильников очень прост. Так как теплота обусловлена движением молекул, для охлаждения тела нужно просто это движение замедлить, то есть отнять у молекул кинетическую энергию. Сложность, однако, в том, что существует более десятка различных способов этого отъема, и для каждой практической цели применяется свой. Например, в классическом учебнике Генриха Польманна по холодильной технике почти полторы тысячи страниц, хотя там описаны далеко не все способы охлаждения.
В бытовых холодильниках и кондиционерах чаще всего применяется радиатор с хладагентом, имеющим низкую температуру кипения, то есть перехода из жидкого состояния в газообразное. Для испарения хладагента требуется энергия, которую он забирает у воздуха холодильной камеры или кондиционера, отчего воздух и остывает.
Чтобы отнять тепло, можно применять полупроводниковые системы, в которых охлаждение происходит при пропускании электрического тока. Такие системы используются для охлаждения электронных чипов. Можно охладить объект, заставив его излучать энергию в виде звуковых волн.
Удивительное открытие, удостоенное Нобелевской премии, сделано в последние годы. Оказалось, что вещество можно охлаждать с помощью света. Если правильно подобрать длину волны лазерного излучения, то можно добиться, чтобы помещенные в магнитную ловушку атомы, движущиеся навстречу световой волне, поглощали фотоны. Импульс этих фотонов направлен навстречу движению атомов, и поэтому атомы при поглощении затормаживаются, то есть происходит охлаждение. Обездвиженные атомы гораздо легче исследовать. В обычных
Большой прогресс ожидает и наши традиционные холодильники. За счет применения новых материалов и технологий можно будет использовать способы охлаждения, которые раньше были невыгодны. Новые холодильники будут потреблять в два раза меньше энергии, а сам агрегат будет раза в полтора компактнее.
Как узнать время?
Вопрос о том, как узнать время, сейчас кажется тривиальным, потому что у всех есть часы. Посмотрел на часы — узнал время. Нет часов — посмотрел на экран телевизора или послушал радио. Но в действительности вы не определили время, а лишь узнали его. А между тем кто-то это время нам установил, кто-то эту услугу нам оказал.
Измерением времени человечество интересуется с момента своего возникновения. Если бы люди не научились определять сезонные времена, не смогли бы выжить. Оседлая жизнь была бы невозможна. Интересно, что существовали календари, в которых указывалось не четыре, а лишь три сезона. Например, в Древнем Египте были сезоны половодья, сева и сбора урожая. Многие народы Европы знали только зиму, весну и лето. И естественно, что это время измерялось по положению астрономических тел — звезд, Солнца, Луны.
Существовало несколько очевидных масштабов: видимое годовое движение Солнца, Луны и изменение ее фаз, а также суточные движения небесных тел. Поэтому у разных народов возникали различные календари в зависимости от того, наблюдение за движением какого светила бралось за основу. Сразу же появилась и остается актуальной до сих пор проблема синхронизации разных календарей, поскольку периоды движений светил и Земли не кратны друг другу. Например, период обращения Земли вокруг Солнца содержит нецелое число периодов вращения Земли вокруг своей оси. Поэтому для удобства пользования по результатам астрономических наблюдений в календари надо вносить регулярные поправки, например високосные дни, что оказалось серьезной научной задачей. Человечество обходилось такими наблюдениями буквально всю свою историю.
В XVII веке после открытия Галилеем постоянства периода колебаний маятника были изобретены современные механические часы. В то время люди, по-видимому, никуда не торопились и у часов была только одна стрелка — часовая. Механические часы быстро достигли точности, превышающей точность хода небесных светил, и стали эталоном продолжительности интервалов времени. Однако начало отсчета интервалов все равно необходимо согласовывать с небесными событиями, чтобы у всех людей было единое время.
В 50-е годы XX века возникли кварцевые эталоны времени, точность которых составляет несколько миллионных долей секунды в сутки. Но и их качество перестало удовлетворять людей. Сейчас, когда человечество занимается очень тонкими задачами, требования к измерению времени возрастают необычайно. Мы даже не представляем, что живем в системе, где существует мировое время, которое регулярно отслеживается, и поддерживается, и вводится во все наши информационные составляющие — телевидение, радио, компьютерные сети. И уже не хватает точности не только механических часов, но и кварцевых. Для дальнейшего улучшения измерения времени используют атомные эталоны частоты, стабильность которых в миллион раз выше стабильности вращения Земли.
Главный эталон времени России входит в группу лучших мировых эталонов. Он находится во Всероссийском научно-исследовательском институте физико-технических и радиотехнических измерений (ВНИИФТРИ) в Зеленограде. Это очень сложный комплекс аппаратуры. Его погрешность не превышает одной секунды за полмиллиона лет.
Таким образом, время узнать очень трудно, потому что есть несколько физических механизмов измерения промежутков времени и нужда в синхронизации разных времен. А уж мы с вами только смотрим на отображение того времени, которое добыто для нас его хранителями.