Путешествие наших генов
Шрифт:
1. Odar, В., A Dufour bladelet from Potocka zijalka (Slovenia). Arheoloski vestnik, 2008. 59: p. 9–16.
2. Posth, C., et al., Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe. Curr Biol, 2016. 26: p. 1–7.
3. Tallavaara, М., et al., Human population dynamics in Europe over the Last Glacial Maximum. Proc Natl Acad Sci USA, 2015. 112(27): p. 8232–7.
4. Alley, R. B., The Younger Dryas cold interval as viewed from central Greenland. Quaternary Science Reviews., 2000. 19(1): p. 213–226.
5. Broecker, W. S., Geology. Was the Younger Dryas triggered by a flood? Science, 2006. 312(5777): p. 1146–8.
6. Walter, К. М., et al., Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature, 2006. 443(7107): p. 71–5.
7. Zimov, S. A., E. A. Schuur, and F. S. Chapin, 3rd. Climate change. Permafrost and the global carbon budget. Science, 2006. 312(5780): p. 1612–3.
8. Grunberg, J. М., et al., Mesolithic burials — Rites, symbols and social organisation of early postglacial communities, Tagungen des Landesmuseums fur Vorgeschichte Halle (Saale), Germany. Vol. 13. 2013, International Conference Halle.
9. Mannino, M. A., et al., Climate-driven environmental changes around 8,200 years ago favoured increases in cetacean stran dings and Mediterranean hunter-gatherers exploited them. Sci Rep, 2015. 5: p. 16288.
10. Botigue, L. R., et al., Ancient European dog genomes reveal continuity since the Early Neolithic. Nat Commun, 2017. 8: p. 16082.
11. Thalmann, O., et al., Complete mitochondrial genomes of ancient canids suggest a European origin of domestic dogs. Science, 2013. 342(6160): p. 871–4.
12. Arendt, М., et al., Diet adaptation in dog reflects spread of prehistoric agriculture. Heredity (Edinb), 2016. 117(5): p. 301–306.
13. Mascher, М., et al., Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat Genet, 2016. 48(9): p. 1089–93.
14. Riehl, S., M. Zeidi, and N. J. Conard, Emergence of agriculture in the foothills of the Zagros Mountains of Iran. Science, 2013. 341(6141): p. 65–7.
15. Larson, G., The Evolution of Animal Domestication. Annual Review of Ecology, Evolution, and Systematics, 2014. 45: p. 115–36.
16. Gamba, C., et al., Genome flux and stasis in a five millennium transect of European prehistory. Nat Commun, 2014. 5: p. 5257.
17. Feldman,
18. Lazaridis, I., et al., Genomic insights into the origin of farming in the ancient Near East. Nature, 2016. 536(7617): p. 419–24.
19. Lazaridis, I., et al., Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature, 2014. 513(7518): p. 409–13.
20. Mathieson, I., et al., Genome-wide patterns of selection in 230 ancient Eurasians. Nature, 2015. 528(7583): p. 499–503.
21. Jablonski, N. G. and G. Chaplin, Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc Natl Acad Sci USA, 2010. 107 Suppl 2: p. 8962–8.
22. Gamarra, B., et al., 5000 years of dietary variations of prehistoric farmers in the Great Hungarian Plain. PLoS One, 2018. 13(5): p. e0197214.
23. Liem, E. B., et al., Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads. Anesthesiology, 2005. 102(3): p. 509–14.
24. Ryan, C., et al., Sex at Dawn: The Prehistoric Origins of Modern Sexuality. 2010: Harper.
25. Uthmeier, Т., Bestens angepasst — Jungpalaolithische Jager und Sammler in Europa. In: Klimagewalten: Treibende Kraft der Evolution. 2017: Konrad Theiss.
26. Behringer, W., Das wechselhafte Klima der letzten 1000 Jahre. In: ebd.
27. Muller, A., Was passiert, wenn es kalter oder warmer wird? In: ebd.
28. Hallgren, E, et al., Skulls on stakes and in water. Mesolithic mortuary rituals at Kanaljorden, Motala, Sweden 7000 BP. In: Mesolithische Bestattungen — Riten, Symbole und soziale Organisation fruher postglazialer Gemeinschaften. 2013: Landesamt fur Denkmalpflege und Archaologie Sachsen-Anhalt.
1. Bollongino, R., et al., 2000 years of parallel societies in Stone Age Central Europe. Science, 2013. 342(6157): p. 479–81.
2. Bajic, V., et al., Genetic structure and sex-biased gene flow in the history of southern African populations. Am J Phys Anthropol, 2018. 167(3): p. 656–671.
3. Mummert, A., et al., Stature and robusticity during the agricultural transition: evidence from the bioarchaeological record. Econ Hum Biol, 2011. 9(3): p. 284–301.
4. Cohen, M. N. and G. J. Armelagos, Paleopathology and the origins of agriculture. 1984: Orlando: Academic Press.
5. Mischka, D., Flintbek LA 3, biography of a monument. Journal of Neolithic Archaeology, 2010.
6. Brandt, G., et al., Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science, 2013. 342(6155): p. 257–61.
7. Haak, W., et al., Massive migration from the steppe was a source for Indo-European languages in Europe. Nature, 2015. 522(7555): p. 207–11.
8. Meller, H. (Hrsg.), Krieg — eine archaologische Spurensuche. 2015: Konrad Theiss.
9. Meller, H. (Hrsg.), 3300 BC. Mysteriose Steinzeittote und ihre Welt. 2013: Nunnerich-Asmus.
10. Mittnik, A., et al., The genetic prehistory of the Baltic Sea region. Nat Commun, 2018. 9(1): p. 442.
11. Fugazzola Delpino, M. A. and M. Mineo, La piroga neolitica del lago di Bracciano, La Marmotta 1. Bullettino di Paletnologia Italiana (Rome), 1995. 86: p. 197–266.
12. Greenblatt, C. and M. Spigelman, Emerging pathogens: archaeology, ecology and evolution of infectious disease. 2003: Oxford University Press.
1. Patterson, N., et al., Ancient admixture in human history. Genetics, 2012. 192(3): p. 1065–93.
2. Skoglund, P. and D. Reich, A genomic view of the peopling of the Americas. Curr Opin Genet Dev, 2016. 41: p. 27–35.
3. Raghavan, M., et al., Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature, 2014. 505(7481): p. 87–91.
4. Allentoft, М. E., et al., Population genomics of Bronze Age Eurasia. Nature, 2015. 522(7555): p. 167–72.
5. Anthony, D. W., The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World. 2007: Princeton University Press.
6. Wang, С. C., et al., The genetic prehistory of the Greater Caucasus. bioRxiv 2018. 322347.
7. Mathieson, I., et al., The genomic history of southeastern Europe. Nature, 2018. 555(7695): p. 197–203.
8. Andrades Valtuena, A., et al., The Stone Age Plague and Its Persistence in Eurasia. Curr Biol, 2017. 27(23): p. 3683–3691 e8.
9. Olalde, I., et al., The Beaker phenomenon and the genomic transformation of northwest Europe. Nature, 2018. 555(7695): p. 190–196.
10. Adler, W., Gustaf Kossinna, in Studien zum Kulturbegriff in der Vor- und Fruhgeschichtsforschung, R. Habelt, Editor. 1987. p. 33–56.
11. Heyd, V., Kossina’s smile. Antiquity, 2017. 91(356): p. 348–359.
12. Kristiansen, K., et al., Re-theorizing mobility and the formation of culture and language among the Corded Ware Cultures in Europe. Antiquity 91: 334–47. Antiquity, 2017. 91: p. 334–47.
13. Orlando, L., et al., Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature, 2013. 499(7456): p. 74–8.
14. Gaunitz, C., et al., Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science, 2018. 360(6384): p. 111–114.
15. Goldberg, A., et al., Ancient X chromosomes reveal contrasting sex bias in Neolithic and Bronze Age Eurasian migrations. Proc Natl Acad Sci USA, 2017. 114(10): p. 2657–2662.
16. Meller, H., A. Muhl, and K. Heckenhahn, Tatort Eulau: Ein 4500 Jahre altes Verbrechen wird aufgeklart. 2010: Konrad Theiss.
17. Meller, H. and K. Michel, Die Himmelsscheibe von Nebra: Der Schlussel zu einer untergegangenen Kultur im Herzen Europas. 2018: Propylaen Verlag.
18. Segurel, L. and C. Bon, On the Evolution of Lactase Persistence in Humans. Annu Rev Genomics Hum Genet, 2017. 18: p. 297–319.
1. Haspelmath, М., M. S. Dryer, and D. Gil, The World Atlas of Language Structures. 2005, Oxford Linguistics.
2. Gray, R. D., Q. D. Atkinson, and S. J. Greenhill, Language evolution and human history: what a difference a date makes. Philos Trans R Soc Lond В Biol Sci, 2011. 366(1567): p. 1090–100.
3. Renfrew, C., Archaeology and Language: The Puzzle of Indo-European Origins. 1987: Cambridge University Press.
4. Gray, R. D. and Q. D. Atkinson, Language-tree divergence times support the Anatolian theory of Indo-European origin. Nature, 2003. 426(6965): p. 435–9.
5. Gimbutas, M. Culture Change in Europe at the Start of the Second Millennium В. C. A Contribution to the In-do-European Problem. In: Fifth International Congress of Anthropological and Ethnological Sciences. 1956. Philadelphia.
6. Kontler, L., Millennium in Central Europe: A History of Hungary. 1999: Atlantisz Publishing House.
7. Narasimhan, V., et al., The Genomic Formation of South and Central Asia. bioRxiv 2018. 292581.
8. Wang, С. C., et al., The genetic prehistory of the Greater Caucasus. bioRxiv 2018. 322347.
9. Jones, E. R., et al., Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat Commun, 2015. 6: p. 8912.
1. Fokkens, H. and A. Harding, The Oxford Handbook of the European Bronze Age. 2013: Oxford University Press.
2. Anthony, D. W., The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World. 2007: Princeton University Press.
3. Risch, R. Fin Klimasturz als Ursache fur den Zerfall der alten Welt. In: 7. Mitteldeutscher Archaologentag 2014. Halle (Saale), Germany: Landesamt f. Denkmalpflege u. Archao-logie Sachsen-Anhalt.
4. Knipper, C., et al., A distinct section of the Early Bronze Age society? Stable isotope investigations of burials in settlement pits and multiple inhumations of the Unetice culture in central Germany. Am J Phys Anthropol, 2016. 159(3): p. 496–516.
5. Knipper, C., et al., Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proc Natl Acad Sci USA, 2017. 114(38): p. 10083–10088.
6. Mittnik, A., et al., Kinship-based social inequality in Bronze Age Europe. Unpublished, 2019.
7. Maran, J. and P. Stockhammer, Appropriating Innovations: Entangled Knowledge in Eurasia, 5000–1500 BCE 2017: Oxbow Books.
8. Hofmanova, Z., et al., Early farmers from across Europe directly descended from Neolithic Aegeans. Proc Natl Acad Sci USA, 2016. 113(25): p. 6886–91.
9. Meller, H., M. Schefzik, and P. Ettel, Krieg — eine archaologische Spurensuche. 2015: Theiss, in Wissenschaftliche Buchgesellschaft.
10. Lidke, G., T. Terberger, and D. Jantzen, Das bronzezeitliche Schlachtfeld im Tollensetal — Krieg, Fehde oder Elitenkonflikt? In: Krieg — eine archaologische Spurensuche, H. Meller and M. Schefzik, Editors. 2015: Theiss, in Wissenschaftliche Buchgesellschaft.
11. Schiffels, S., et al., Iron Age and Anglo-Saxon genomes from East England reveal British migration history. Nat Commun, 2016. 7: p. 10408.
12. Risch, R., et al., Vorwort der Herausgeber. In: 2200 BC — Ein Klimasturz als Ursache fur den Zerfall der Alten Welt? 2015: Landesamt fur Denkmalpflege und Archaologie Sachsen-Anhalt.
13. Weiss, H., Megadrought, collapse, and resilience in late 3rd millenium BC Mesopotamia. In: ebd.
1. Little, L. К., Plague and the end of antiquity: the pandemic of 541–750. 2007: Cambridge University Press.
2. Bos, К. I., et al., Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. Elife, 2016. 5: p. el2994.
3. Bos, К. I., et al., Parallel detection of ancient pathogens via array-based DNA capture. Philos Trans R Soc Lond В Biol Sci, 2015. 370(1660): p. 20130375.
4. Bos, К. I., et al., A draft genome of Yersinia pestis from victims of the Black Death. Nature, 2011. 478(7370): p. 506–10.
5. Bos, К. I., et al., Yersinia pestis: New Evidence for an Old Infection. PLoS One, 2012. 7(11): p. e49803.
6. Du Toit, A., Continued risk of Ebola virus outbreak. Nat Rev Microbiol, 2018. 16(9): p. 521.
7. Rasmussen, S., et al., Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell, 2015. 163(3): p. 571–82.
8. Achtman, M., et al., Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA, 1999. 96(24): p. 14043-8.
9. Allocati, N., et al., Bat-man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations. Cell Death Discov, 2016. 2: p. 16048.
10. Armelagos, G. J. and K. Barnes, The evolution of human disease and the rise of allergy: Epidemiological transitions. Medical Anthropology: Cross Cultural Studies in Health and Illness, 1999. 18(2).
11. Armelagos, G. J., A. H. Goodman, and
12. Omran, A. R., The epidemiologic transition. A theory of the epidemiology of population change. Milbank Mem Fund Q, 1971. 49(4): p. 509–38.
13. Gage, K. L. and M. Y. Kosoy, Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol, 2005. 50: p. 505–28.
14. Benedictow, O. J., The Black Death, 1346–1353: The complete history. 2004: Boydell & Brewer.
15. Hinnebusch, B. J., C. O. Jarrett, and D. M. Bland, «Fleaing» the Plague: Adaptations of Yersinia pestis to Its Insect Vector That Lead to Transmission. Annu Rev Microbiol, 2017. 71: p. 215–232.
16. Hinnebusch, B. J. and D. L. Erickson, Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol, 2008. 322: p. 229–48.
17. Wiechmann, I. and G. Grupe, Detection of Yersinia pestis DNA in two early medieval skeletal finds from Aschheim (Upper Bavaria, 6th century A. D.). Am J Phys Anthropol, 2005. 126(1): p. 48–55.
18. Vagene, A. J., et al., Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat Ecol Evol, 2018. 2(3): p. 520–528.
19. Andrades Valtuena, A., et al., The Stone Age Plague and Its Persistence in Eurasia. Curr Biol, 2017. 27(23): p. 3683–3691 e8.
20. Rascovan, N., et al., Emergence and Spread of Basal Lineages of Yersinia pestis during the Neolithic Decline. Cell, 2018.
21. Hymes, R., Epilogue: A Hypothesis on the East Asian Beginnings of the Yersinia pestis Polytomy. The Medieval Globe, 2016. 1(12).
22. Yersin, A., Sur la peste bubonique (serotherapie). Ann Inst Pasteur, 1897. 11: p. 81–93.
23. Bergdolt, К., Uber die Pest. Geschichte des Schwarzen Tods. 2006: С. H. Beck.
24. Keller, M., et al., Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750). bioRxiv 2018. 481226.
25. Wheelis, М., Biological warfare at the 1346 siege of Caffa. Emerg Infect Dis, 2002. 8(9): p. 971–5.
26. Schulte-van Pol, K., D-Day 1347: Die Invasion des Schwarzen Todes., in Die Zeit. 1997.
27. Buntgen, U., et al., Digitizing historical plague. Clin Infect Dis, 2012. 55(11): p. 1586–8.
28. Spyrou, M. A., et al., Historical Y. pestis Genomes Reveal the European Black Death as the Source of Ancient and Modern Plague Pandemics. Cell Host Microbe, 2016. 19(6): p. 874–81.
29. Spyrou, M. A., et al., A phylogeography of the second plague pandemic revealed through the analysis of historical Y. pestis genomes. bioRxiv. 481242.
1. World Health Organization, Wkly. Epidemiol. Rec., 2011. 86(389).
2. Brody, S. N., The Disease of the Soul: Leprosy in Medieval Literature 1974, Ithaca: Cornell Press.
3. Cole, S. Т., et al., Massive gene decay in the leprosy bacillus. Nature, 2001. 409(6823): p. 1007–11.
4. The Mycobacterial Cell Envelope, M. Daffe and J.-M. Reyrat, Editors. 2008, ASM Press: Washington, DC.
5. World Health Organization, Fact Sheet Leprosy. 2015.
6. Robbins, G., et al., Ancient skeletal evidence for leprosy in India (2000 B. C.). PLoS One, 2009. 4(5): p. e5669.
7. Schuenemann, V. J., et al., Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathog, 2018. 14(5): p. e1006997.
8. Schuenemann, V. J., et al., Genome-wide comparison of medieval and modern Mycobacterium leprae. Science, 2013. 341(6142): p. 179–83.
9. Truman, R. W., et al., Probable zoonotic leprosy in the southern United States. N Engl J Med, 2011. 364(17): p. 1626–33.
10. Singh, P., et al., Insight into the evolution and origin of leprosy bacilli from the genome sequence of Mycobacterium lepromatosis. Proc Natl Acad Sci USA, 2015. 112(14): p. 4459–64.
11. Avanzi, C., et al., Red squirrels in the British Isles are infected with leprosy bacilli. Science, 2016. 354(6313): p. 744–747.
12. Irgens, L. М., [The discovery of the leprosy bacillus], Tidsskr Nor Laegeforen, 2002. 122(7): p. 708–9.
13. Cao, A., et al., Thalassaemia types and their incidence in Sardinia. J Med Genet, 1978. 15(6): p. 443–7.
14. Wambua, S., et al., The effect of alpha+-thalassaemia on the incidence of malaria and other diseases in children living on the coast of Kenya. PLoS Med, 2006. 3(5): p. el58.
15. Luzzatto, L., Sickle cell anaemia and malaria. Mediterr J Hematol Infect Dis, 2012. 4(1): p. e2012065.
16. O’Brien, S. J. and J. P. Moore, The effect of genetic variation in chemokines and their receptors on HIV transmission and progression to Aids. Immunol Rev, 2000. 177: p. 99–111.
17. Wirth, Т., et al., Origin, spread and demography of the Mycobacterium tuberculosis complex. PLoS Pathog, 2008. 4(9): p. e1000160.
18. World Health Organization, Tuberculosis (ТВ). 2018.
19. Brosch, R., et al., A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA, 2002. 99(6): p. 3684–9.
20. Comas, I., et al., Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet, 2013. 45(10): p. 1176–82.
21. Bos, К. I., et al., Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature, 2014. 514(7523): p. 494–7.
22. Vagene, A. J., et al., Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat Ecol Evol, 2018. 2(3): p. 520–528.
23. Dobyns, H. E, Disease transfer at contact. Annu. Rev. Anthropol, 1993. 22: p. 273–291.
24. Farhi, D. and N. Dupin, Origins of syphilis and management in the immunocompetent patient: facts and controversies. Clin Dermatol, 2010. 28(5): p. 533–8.
25. Crosby, A. W., The Columbian exchange: biological and cultural consequences of 1492. 2003, New York: Praeger.
26. Diamond, J. G., Germs and Steel. New York: W. W. Norton, p. 210. In: Guns, Germs and Steel. 1997, New York: W. W. Norton.
27. Winau, R., Seuchen und Plagen: Seit Armors Kocher vergiftete Pfeile fuhrt. Fundiert, 2002. 1.
28. Schuenemann, V. J., et al., Historic Treponema pallidum genomes from Colonial Mexico retrieved from archaeological remains. PLoS Negl Trap Dis, 2018. 12(6): p. e0006447.
29. Knauf, S., et al., Nonhuman primates across sub-Saharan Africa are infected with the yaws bacterium Treponema pallidum subsp. pertenue. Emerg Microbes Infect, 2018. 7(1): p. 157.
30. Taubenberger, J. К. and D. M. Morens, 1918 Influenza: the mother of all pandemics. Emerg Infect Dis, 2006. 12(1): p. 15–22.
31. Gygli, S. М., et al., Antimicrobial resistance in Mycobacterium tuberculosis: mechanistic and evolutionary perspectives. FEMS Microbiol Rev, 2017. 41(3): p. 354–373.
32. Findlater, A. and Bogoch, I. I., Human Mobility and the Global Spread of Infectious Diseases: A Focus on Air Travel. Trends Parasitol, 2018. 34(9): p. 772–783.
1. Findlater, A. and Bogoch, I. I., Human Mobility and the Global Spread of Infectious Diseases: A Focus on Air Travel. Trends Parasitol, 2018. 34(9): p. 772–783.
2. Klein, L., Gustaf Kossinna: 1858–1931, in Encyclopedia of Archaeology: The Great Archaeologists, T. Murray, Editor. 1999, ABC–CLIO. p. 233–246.
3. Kossinna, G., Die Herkunft der Germanen. Zur Methode der Siedlungsarchaologie. 1911, Wurzburg: Kabitzsch.
4. Grunert, H., Gustaf Kossinna. Ein Wegbereiter der nationalsozialistischen Ideologie, in Prahistorie und Nationalsozialismus: Die mittel- und osteuropaische Ur- und Fruhgeschichtsforschung in den Jahren 1933–1945, A. Leube, Editor. 2002, Synchron Wissenschaftsverlag der Autoren: Heidelberg.
5. Eggers, H. J., Einfuhrung in die Vorgeschichte. 1959, Munchen: Piper.
6. Eggert, М. К. H., Archaologie. Grundzuge einer historischen Kulturwissenschaft. 2006, Tubingen: A. Francke.
7. Schulz, М., Neolithic Immigration: How Middle Eastern Milk Drinkers Conquered Europe, in Spiegel Online. 2010.
8. Martin, A. R., et al., An Unexpectedly Complex Architecture for Skin Pigmentation in Africans. Cell, 2017. 171(6): p. 1340–1353 e14.
9. Jinek, М., et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012. 337(6096): p. 816–21.
10. Wade, N., Researchers Say Intelligence and Diseases May Be Linked in Ashkenazic Genes. New York Times, 2005.
11. Gauland, A., Warum muss es Populismus sein? Frankfurter Allgemeine Zeitung: 6. Oktober 2018.
12. Rosling, H., Factfulness: Wie wir lernen, die Welt so zu sehen, wie sie wirklich ist. 2018: Ullstein.
13. Ahrendt, H., Elemente und Ursprtinge totaler Herrschaft: Antisemitismus. Imperialismus. Totale Herrschaft. 1955: Piper.
14. Seibel, A., et al., Mogen Sie keine Ttirken, Herr Sarrazin? Welt am Sonntag: 29. August 2010.
15. The elementary DNA of Dr Watson. The Sunday Times: 14. Oktober 2007.
Благодарности
Йоханнес Краузе благодарит Вольфганга Хаака, Александра Хербига, Хенрике Хейне, Сванте Паабо, Кэй Прюфер, Стефана Шиффельса и Филиппа Штокхаммера за критику и корректуру отдельных глав. Особенную благодарность оба автора выражают Харальду Меллеру, который вдохновлял нас своими драгоценными знаниями и рассказами о древней и ранней истории Европы и был вместе с нами.
Изложенные в этой книге знания об эволюции человека и генетической истории Европы не были бы возможны без научной работы многочисленных коллег. Отдельное спасибо вам, Эдриэн Бриггс, Эрнан Бурбано, Анатолий Деревянко, Киаомей Фу, Ричард Эдвард Грин, Дженет Келсо, Мартин Кирхер, Анна-Сапфо Маласпинас, Томишлав Маричич, Маттиас Мейер, Сванте Паабо, Ник Паттерсон, Кэй Прюфер, Удо Штенцель, Давид Рейх, Монтгомери Слаткин и многим другим членам консорциума неандертальского генома.
Сердечное спасибо вам, Марк Ахтманн, Курт Алт, Наташа Арора, Эрве Бошерен, Джейн Бикстра, Александра Бужилова, Дэвид Карамелли, Стюарт Коул, Николас Конар, Изабелль Кревекер, Доминик Делсате, Дороти Друкер, Матейя Хайдиньяк, Фредрик Халгрен, Свенд Хансен, Катерина Харвати, Микаэла Хэрбек, Жан-Жак Юблин, Даниэль Хусон, Кристиан Кристиансен, Корина Книппел, Карлес Лалуэза Фокс, Иосиф Лазаридис, Марк Липсон, Сандра Лёш, Фрэнк Мейкснер, Йен Мэтисон, Майкл МакКормик, Кэй Низелт, Иниго Олалде, Людовик Орландо, Эрнст Перника, Сабина Рейнхольд, Роберто Риш, Элен Ружье, Патрик Семаль, Понтус Скоглунд, Вивьен Слон, Энн Стоун, Йири Свобода, Фредерик Валентен, Йоахим Валь, Альберт Цинк, и многим другим коллегам из области археологии, антропологии, биоинформатики, генетики и медицины. Без вас мы никогда не смогли бы реконструировать многочисленные истории из европейского прошлого.