Пятьсот двадцать головоломок
Шрифт:
165. Всего голосовавших было 207. Сперва 115 избирателей проголосовало «за» и 92 «против», причем большинство составило 23 голоса, что как раз и равно одной четверти от 92. Но когда 12 человек, для которых не нашлось стульев, присоединились к оппозиции, оказалось, что «за» подано 103, а «против» — 104 голоса. Так что победили противники забастовки большинством в один голос.
166. Артур может выполнить всю работу за 14
167. Сумма номеров
Решив уравнение ( x 2+ x)/2 = y 2в целых числах, получим ответы:
Число | Номер |
домов x | дома y |
1 | 1 |
8 | 6 |
49 | 35 |
288 | 204 |
1681 | 1189 |
и т. д.
168. Номер дома Брауна 84, а всего на улице 119 домов. Сумма чисел от 1 до 84 равна 3570, а сумма чисел от 1 до 119 составит 7140, что, как и требовалось, ровно в 2 раза больше.
Выпишем последовательные решения (в целых числах) уравнения 2 x 2– 1 = y 2:
x | y |
1 | 1 |
5 | 7 |
29 | 41 |
169 | 239 |
985 | 1393 |
и т. д. Тогда целая часть [37] x/2 даст нам номер дома, а целая часть y/2 — общее число домов. Так (опуская тривиальный случай 0—0), мы получаем 2—3, 14—20, 84—119, 492—696 и т.д.
37
Целой частью числа называется наибольшее целое число, не превосходящее данное. — Прим. перев.
169. На нечетной стороне улицы номер дома равен 239, а всего на ней расположено 169 домов. На четной стороне улицы номер дома равен 408, а всего на ней расположено 288 домов.
В первом случае мы ищем решение в целых числах уравнения 2 x 2– 1 = y 2. Получаем следующие ответы:
Число | Номер |
домов x | дома y |
1 | 1 |
5 | 7 |
29 | 41 |
169 | 239 |
985 | 1393 |
и т. д.
Во втором случае мы ищем решение в целых числах уравнения 2( x 2+ x) = y 2. Получаем следующее:
Число | Номер |
домов x | дома y |
1 | 2 |
8 | 12 |
49 | 70 |
288 | 408 |
1681 | 2378 |
и
Эти два случая, равно как и предыдущие две головоломки, похожи друг на друга и используют хорошо известное уравнение Пелля.
170. Ошибка Хильды состояла в том, что заданное число она умножила не на 409, а на 49. Разделив величину от полученной погрешности на разность этих чисел, получим требуемое число 912.
171. Семнадцать лошадей требовалось поделить в пропорциях: 1/2 , 1/3 ,
Один читатель прислал мне следующее хитроумное решение:
172. Перечислим шесть прямоугольных треугольников, имеющих одинаковый, наименьший из возможных (720), периметр: 180, 240, 300; 120, 288, 312; 144, 270, 306; 72, 320, 328; 45, 336, 339; 80, 315, 325.
173. Запишем следующую последовательность чисел, впервые исследованную Леонардо Фибоначчи (родился в 1175 г.), который практически ввел в европейский обиход привычные нам арабские цифры:
Каждое последующее число равно сумме двух предыдущих. Сумма всех чисел, от первого до данного на 1 меньше числа, идущего через один после данного. Если удвоить любой член последовательности и прибавить к нему предыдущий, то получится член, который следует через один после данного. Далее, в первый год приплод будет составлять 0 телок, во второй 1, на третий 1, на четвертый 2 и т. д. При этом как раз и получатся члены данной последовательности. Двадцать пятый член равен 46 386, и если мы сложим все 25 членов, то получим правильный ответ 121 392. Но на самом деле нет необходимости выполнять это сложение. Найдя, двадцать четвертый и двадцать пятый члены, мы просто скажем, что 46 368, умноженное на 2, плюс 28 657 равно 121 393, и вычтем затем 1.
174. Взяв любое число, а потом другое, равное 1 плюс дробь, у которой в числителе стоит 1, а в знаменателе число, на 1 меньшее данного, мы получим пару чисел, дающих в сумме и в произведении одно и то же. Вот несколько примеров: 3 и 1 1/2 , 4 и 1 1/3 , 5 и 1 1/4 и т. д. Следовательно, получив 987 654 321, я немедленно написал 1
Пару 2 и 2 рассматривают как исключение потому, что знаменатель в этом случае равен 1, а второе число тоже оказывается целым 1