использует модель работы реального времени не только относительно сигналов диапазона
SIGRTMIN
...
SIGRTMAX
, но и для всего множества стандартных UNIX-сигналов. Это расширение, впрочем, не противоречит приведенному выше утверждению POSIX, что такое решение факультативно (см. пункт 9 описания модели сигналов реального времени) и оставляется на усмотрение разработчика ОС.
Любопытным может оказаться и рассмотрение реакции на сигналы, которые никак не определены в QNX (в исследуемый диапазон для сравнения включены как неопределенные, так и определенные сигналы системы):
# ./s5 -b39 -e41 -n2
signal SIGRTMIN=41 - signal SIGRTMAX=56
CHILD: signal mask set
signal sent: 39 with val = 0
signal sent: 39 with val = 1
signal sent: 40 with val = 0
signal sent: 40 with val = 1
signal sent: 41 with val = 0
signal sent: 41 with val = 1
PARENT finished!
# CHILD: signal unblock
received signal 41 code = -2 val = 0
received signal 41 code = -2 val = 1
received signal 40 code = -2 val = 0
received signal 40 code = -2 val = 1
received signal 39 code = -2 val = 0
received signal 39 code = -2 val = 1
Для них реакция никак не отличается от реакции на другие сигналы, что, впрочем, неудивительно, учитывая замечание в цитировавшемся выше фрагменте документации о том, что возбуждение сигнала и посылка импульса (сообщения) микроядра в QNX — одно и то же, и обрабатываются они единым механизмом.
Посмотрим также реакцию системы на специальные сигналы QNX, номера которых выше
SIGRTMAX
(в исследуемый диапазон опять для сравнения включим как специальные сигналы (57…64), так и сигналы из диапазона 1…
SIGRTMAX
):
# ./s5 -b56 -e59 -n2
signal SIGRTMIN=41 - signal SIGRTMAX=56
set signal handler... Invalid argument
set signal handler... Invalid argument
set signal handler... Invalid argument
CHILD: signal mask set
signal sent: 56 with val = 0
signal sent: 56 with val = 1
signal sent: 57 with val = 0
signal sent: 57 with val = 1
signal sent: 58 with val = 0
signal sent: 58 with val = 1
signal sent: 59 with val = 0
signal sent: 59 with val = 1
PARENT: finished!
# CHILD: signal unblock
received signal 56 code = -2 val = 0
received signal 56 code = -2 val = 1
Из вывода видно, что на сигнал с номером 56 реакция ожидаемая, а на остальные сигналы реакции нет вовсе. Как и следует из предупреждения в документации, заблокировать или изменить реакцию на эти сигналы невозможно, и попытка установки
sigaction
для них завершается ошибкой.
Таким образом, система фактически
никак не выделяет сигналы диапазона реального времени (41…56), но обрабатывает аналогичным образом и стандартные сигналы UNIX (1…31), и специальные сигналы QNX (57…64), и даже сигналы, никак не специфицируемые системой вообще (32…40). Корректнее говорить не об обработке сигналов реального времени и даже не о модели сигналов реального времени, а об еще одном способе работы с любыми сигналами - обработке сигналов на базе очередей сигналов.
Примечание
Для полноты картины приведем конкретную спецификацию типа
siginfo_t
для QNX (выше мы рассматривали минимальную спецификацию этого типа, требуемую POSIX). Спецификация весьма объемна (вся информация до конца раздела может быть безболезненно пропущена теми, кому это неинтересно), но предоставляет программисту исчерпывающую информацию о полученном сигнале:
typedef struct {
int si_signo;
int si_code; /* if SI_NOINFO, only si_signo is valid */
И полный перечень определений символьных констант, используемых для установки значений поля
si_code
:
#define SI_USER 0
#define SI_RESERVED1 (-1)
#define SI_QUEUE (-2)
#define SI_TIMER (-3)
#define SI_ASYNCIO (-4)
#define SI_MESGQ (-5)
#define SI_NOTIFY (-6)
#define SI_IRQ (-7)
// QNX managers will never use this range.
#define SI_MINAVAIL (-128)
#define SI_MAXAVAIL (-64)
#define SI_NOINFO 127
#define SI_MAXSZ 126
Значение
SI_QUEUE
, равное -2, — это и есть то значение, которое мы видели в выводе тестовой задачи выше.
Соображения производительности
Ранее мы производили оценку затрат производительности процессора на переключение между контекстами для процессов и для потоков (тестовые задачи, которые мы по их структуре именовали как «симметричные»). Проделаем теперь то же самое, но синхронизацию процессов выполним посылкой и приемом сигнала (переключение контекстов будет происходить именно на операторе