Чтение онлайн

на главную - закладки

Жанры

Рассуждения об основах физики
Шрифт:

4. Наконец, добавим, что современная наука продолжает накапливать опытные факты отнюдь не в пользу 2-го постулата; см. [4].

1. 13. Время, часы и трехмерное пространство

Мы принципиально отказываемся рассматривать время, как составляющую четырехмерного пространства-времени. Такое рассмотрение неизбежно приводит к противоречиям с опытными фактами. Мы принципиально признаем время скалярной величиной.

Дадим определение времени, используя в качестве основных величин координаты и скорость материальной точки. Пусть r – радиус вектор материальной точки; v(x,y,z) – вектор скорости этой точки, как функция координат; dr – дифференциал вектора r; V – модуль скорости. Назовем все указанные

векторные величины нормированными по скорости, если они поделены на модуль скорости, то есть: r/V; dr/V; v/V, из которых последний вектор есть не что иное, как безразмерный единичный вектор того же направления, что и вектор v. Дифференциалом времени dt назовем скалярное произведение:

Временем физического процесса назовем криволинейный интеграл от (1. 15) взятый по траектории движения (l) материальной точки от точки (траектории) A до B:

Здесь и далее под выражением

следует понимать единый символ криволинейного интеграла по кривой (l), а не произведение (l) на интеграл.

При V = 0 выражения (1. 15) и (1. 16) становятся неопределенными. Физический смысл этого таков: в системе, где ничего не движется, понятие времени теряет смысл и не является необходимым для полного описания системы.

Как известно из векторной алгебры, скалярное произведение (у нас (1. 15) и (1. 16)) не зависит от замены координат. Поэтому у нас время tAB, дифференциал времени, а также одновременность событий являются инвариантами по отношению к преобразованию координат.

Назовем часами устройство перемножающее скалярно некоторый нормированный эталонный вектор скорости ve/Ve на нормированные векторы r/Ve и se/Ve; где r – радиус вектор часов, а se – некоторый эталонный вектор, встроенный в часы и всегда того же направления, что и вектор ve. Часы суммируют результаты умножения по правилу:

Здесь N – число периодов часов. Второе слагаемое в (1. 17) есть не что иное, как слагаемое переноса часов. Если часы при измерении времени находятся в покое в начале координат, то тогда:

Именно это время и является эталонным временем для сравнения с ним времени физического процесса. Измерить время tAB это значит узнать при каком k имеет место равенство:

Это время равно интегралу (1. 16) то есть:

Если часы двигаются по кривой (l) от точки A

до точки B независимо от других скоростей, то слагаемое переноса часов tп будет равно интегралу:

При этом скорость ve направляется по касательной к траектории движения часов в заранее выбранном положительном направлении. Другими словами: слагаемое переноса часов равно времени, которое затратит материальная точка, двигаясь по данной кривой вместо часов со скоростью равной ve. В другом случае при измерении времени часы могут двигаться вместе с материальной точкой, время движения которой они измеряют. Тогда на часах кроме времени (1. 19) появится еще слагаемое переноса часов, которое будет равно интегралу:

Здесь под знаком интеграла вместо множителя ve/Ve специально поставлен единичный вектор v/V, который подчеркивает, что согласно прежней договоренности, при таком движении мы направляем вектор ve по направлению вектора v. Итак, показания часов будут равны сумме:

Здесь первое слагаемое – истинное время t, второе слагаемое – слагаемое переноса часов.

С точки зрения математика, введенное нами определение времени, допускает процессы, длительность которых равна нулю. Это такие процессы, в которых векторы dr и v перпендикулярны. Гипотеза о том, что и в природе существуют такие процессы, заслуживает отдельного изучения. Если эта гипотеза действительно имеет место, то нас уже не будет обескураживать тот факт, что сферический световой волновой фронт стягивается в материальную точку (квант) за время равное нулю. При таком преобразовании вектор скорости волнового фронта v перпендикулярен вектору dr. Точнее говоря: если волновой объект представляет собой шаровой слой, ограниченный двумя сферами (в пространстве) толщиной s, то время его преобразования в точку (у нас в световой квант) будет равно: t = s/c, то есть будет равняться длительности волнового цуга (во времени).

1. 14. Выводы

1.Первый и второй постулаты теории относительности есть следствия попыток объяснить результаты физических измерений без учета того факта, что часы, будучи материальным объектом, обладают присущими таким объектам свойствами (слагаемым переноса).

2.Учет этого факта меняет взгляды на измерение времени и приводит к отмене этих постулатов.

3.Преобразования Лоренца отменяются и заменяются преобразованиями Галилея с добавлением формулы перехода от показаний часов к истинному времени.

4.Все рассуждения, в которых применялись преобразования Лоренца, следует пересмотреть заново.

5.Скорость света переходит в разряд обычных скоростей и подчиняется, как и все остальные скорости, правилам классической механики.

Глава 2. Об измерениях в теории относительности

2. 1. Постановка задачи

О возможности измерений в теории относительности (точнее об их невозможности) уже говорилось кратко в [1, с. 4 – 7]. В предыдущей главе мы также показали, что неправильное применение часов при измерении времени приводит к появлению двух ложных постулатов (с которых и начинается теория относительности). Однако, просмотр дискуссий, которые ведутся по вопросу измерений в теории относительности (например, на сайте РАН, forum. lebedev. ru) показал, что имеет место досадное непонимание этой проблемы. Становится ясно, что об этом надо писать более подробно (что и делается в этой главе).

Поделиться:
Популярные книги

Полное собрание сочинений в одной книге

Зощенко Михаил Михайлович
Проза:
классическая проза
русская классическая проза
советская классическая проза
6.25
рейтинг книги
Полное собрание сочинений в одной книге

На Ларэде

Кронос Александр
3. Лэрн
Фантастика:
фэнтези
героическая фантастика
стимпанк
5.00
рейтинг книги
На Ларэде

На границе империй. Том 7. Часть 5

INDIGO
11. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 7. Часть 5

Начальник милиции. Книга 6

Дамиров Рафаэль
6. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции. Книга 6

Черный дембель. Часть 3

Федин Андрей Анатольевич
3. Черный дембель
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Черный дембель. Часть 3

Доктора вызывали? или Трудовые будни попаданки

Марей Соня
Фантастика:
юмористическая фантастика
попаданцы
5.00
рейтинг книги
Доктора вызывали? или Трудовые будни попаданки

Невест так много. Дилогия

Завойчинская Милена
Невест так много
Любовные романы:
любовно-фантастические романы
7.62
рейтинг книги
Невест так много. Дилогия

Отмороженный 8.0

Гарцевич Евгений Александрович
8. Отмороженный
Фантастика:
постапокалипсис
рпг
аниме
5.00
рейтинг книги
Отмороженный 8.0

Жена фаворита королевы. Посмешище двора

Семина Дия
Фантастика:
фэнтези
5.00
рейтинг книги
Жена фаворита королевы. Посмешище двора

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Сын Петра. Том 1. Бесенок

Ланцов Михаил Алексеевич
1. Сын Петра
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Сын Петра. Том 1. Бесенок

Разные стороны

Васильев Андрей Александрович
7. Акула пера в Мире Файролла
Фантастика:
фэнтези
киберпанк
рпг
9.15
рейтинг книги
Разные стороны

Ведьмак (большой сборник)

Сапковский Анджей
Ведьмак
Фантастика:
фэнтези
9.29
рейтинг книги
Ведьмак (большой сборник)