Ремонт часов
Шрифт:
Рис. 189. Узел подвеса маятника:
1 — кронштейн; 2— подвесная пружинка; 3 —стержень маятника
Рис. 190. Маятник настенных часов:
1 — стержень; 2 — линза
Одинарные подвесы употребляются редко, так как при одинарной пружине маятник при колебании отклоняется от плоскости
Маятник часов состоит из легкого, но жесткого стержня и более тяжелого (по сравнению со стержнем) груза — линзы. Груз маятника при регулировке хода часов может быть передвинут вверх и вниз с помощью гайки, находящейся на стержне маятника (рис. 190).
Период колебания маятника зависит от его длины. Чем длиннее маятник, тем медленнее совершаемое им колебание и, наоборот, чем короче маятник (т. е. чем выше поднят груз), тем колебание быстрее.
Рис. 191. Несвободный ход с трением на покое и его последовательная работа:
1 — ходовое колесо; 2 — якорь; 3 —палета входная; 4 —палета выходная; 5 — стальные пластинки, закрепляющие палеты; б— место для
оси анкера
При повышении температуры часы обычно отстают, а при понижении — спешат вследствие того, что стержень маятника, как и все тела, деформируется под воздействием температуры. Для того, чтобы изменения температуры не влияли на точность показания часов, применяют компенсационные маятники. В этом случае маятники изготовляют из материалов, обладающих малым коэффициентом температурного расширения, например дерева (ель или сосна), так как оно при повышении температуры расширяется в два-три раза меньше металла. Чтобы в поры дерева не проникла влага, стержень насквозь пропитывают масляным лаком. В другом случае стержень делают из неоднородных материалов, так как различные металлы под воздействием температуры расширяются в различной степени. Например, стержень маятника может состоять из нескольких стальных и латунных прутьев, упирающихся в поперечный брусок маятника и деформирующихся по длине. Благодаря этому длина маятника остается стабильной и точность хода часов почти не нарушается.
Находясь в состоянии покоя, маятник сохраняет вертикальное положение. Когда маятник выведен из состояния покоя, он возвращается к положению равновесия, благодаря силе тяжести и эластичности подвеса. Однако при движении маятника по инерции он пройдет положение равновесия и отклонится в обратную сторону почти на такое же расстояние, на которое был отклонен первоначально.
Для того чтобы колебания маятника не затухали, стержень маятника входит в разрез вилки, установленной на оси якоря, на котором укреплены входные и выходные палеты, связанные в своей работе с ходовым колесом. Такой ход называется несвободным с трением на покое (рис. 191).
Плоскости покоя входной и выходной падет имеют цилиндрическую форму; скошенные плоскости налет называются плоскостями импульса. Точки начала и конца поверхности покоя, соединенные с центром качания маятника, образуют угол покоя, а точки начала и конца импульса — угол импульса.
Ходовое колесо под воздействием заведенной пружины или поднятой гири через равные промежутки времени поддерживает колебания маятника, сообщая импульсы налетам якоря. Когда маятник начинает отклоняться от одного крайнего положения в другое, он поворачивает и вилку, которая в свою очередь поворачивает якорь. В это время зуб ходового колеса скользит по поверхности покоя входной палеты; затем зуб, попадая на плоскость импульса входной налеты, толкает якорь, а тем самым и вилку в момент, когда маятник еще не дошел до положения равновесия. Правой стороной паз вилки ударяется о стержень, отбрасывая маятник в противоположную сторону. Одновременно зуб ходового колеса проходит плоскость импульса входной
Рис. 192. Маятниковый ход с отходом назад
1 — ходовое колесо; 2— входная палета; 3 — якорь; 4— выходная палета
Рис. 193. Ход с крючковым якорем:
1 — ходовое колесо; 2 —входная палета; 3— якорь; 4 —ось якоря; 5 — выходная палета
Маятник, дойдя до крайнего положения, начинает возвращаться назад, и весь процесс повторяется.
Ходовое колесо имеет различное число зубьев (24,30,36, 42 и т. д.). Якорь охватывает от 4,5 до 11,5 зубьев ходового колеса. Толщина палет несколько менее, чем полшага зуба. Шаг зуба колеса складывается из ширины зуба и ширины впадины.
В некоторых часах применяется ход, представляющий собой цельный стальной отполированный якорь (рис. 192). Это — тип спуска с отходом назад, т. е. при работе часов ходовое колесо несколько отходит назад под воздействием плоскостей покоя якоря. Наконец, имеется ход с крючковым якорем (рис. 193), принцип работы которого подобен спуску с отходом назад.
Настенные часы без боя отечественного производства с семидневным пружинным заводом имеют простую конструкцию: передача с цевочным зацеплением и ход с крючковым якорем (рис. 194). Недостаток данных часов заключается в одинарной пружине подвеса. Пружина подвеса в этих часах входит в разрез кронштейна очень плотно.
Рис. 194. Маятниковые часы отечественного производства без боя:
1 — барабанное колесо; 2— заводная пружина; 3 —заводной вал; 4 —добавочное колесо; 5 — вексельное колесо; 6 — минутный триб; 7 — гайка крепления минутной стрелки; 8 — центральное колесо; 9 —часовое колесо; 10 —ходовое колесо; 11 — якорь; 12 —минутная стрелка; 13 —часовая стрелка; 14 —мост якоря; 15 — пружинка подвеса; 16— промежуточное колесо; 17 —предохранительные штифты; 18 —стержень маятника; 19— мост заводного вала; 20 —вилка; 21 —крючок маятника
2. МЕХАНИЗМ БОЯ НАСТЕННЫХ ЧАСОВ
Схема механизма боя представлена на рис. 195.
Механизм боя в часах имеет собственный источник энергии в виде заведенной пружины, обычно находящейся в барабане, или получает энергию от поднятой гири.
Механизм боя, работающий со счетным колесом, имеет следующие детали:
1— барабан, сопряженный своими зубьями с трибом добавочного колеса, на оси которого насажен счетный диск;
2— добавочное колесо, находящееся в зацеплении с трибом штифтового колеса, несущего на себе 9 — 10 подъемных штифтов или звездочку с тем же количеством выступов;
3— штифтовое колесо, зацепляющееся с трибом первого пускового — стопорного колеса, несущего на себе один штифт;
4— стопорное колесо, зацепляющееся с трибом второго пуско-
вого колеса, также несущего на себе штифт;
5— второе пусковое колесо, находящееся в зацеплении с трибом ветряка-регулятора;