Роман с Data Science. Как монетизировать большие данные
Шрифт:
Обычно дашборды характеризуют какой-то бизнес-процесс (далее слово «процесс» без «бизнес»), например эффективность рекламы, складские остатки, продажи и т. д. Есть еще важные характеристики дашбордов:
• не является «простыней цифр»;
• показывает, где возникла проблема, но не дает ответа на вопрос почему.
Часто велико искушение сделать
Дашборд отвечает на вопрос, где есть проблема, а не почему она возникла. Может возникнуть искушение сделать огромный детальный отчет, чтобы быстро найти причину, – но тогда ваш дашборд превратится в простыню цифр, о которой я писал выше. В нем не будет интерактивности, и нужно будет «провалиться» внутрь этих цифр, чтобы проанализировать их, а для этого понадобятся совсем другие инструменты. Когда вам в следующий раз захочется это сделать, вспомните, удавалось ли вам хоть раз найти причину
Никакой дашборд не заменит интерактивный анализ, для которого нужны соответствующая аналитическая система (SQL, OLAP, Google Data Studio, Tableau) и знание контекста. Мы никогда не сможем придумать ограниченный набор отчетов, которые будут отвечать на вопрос «почему». Максимум, что мы можем сделать, – наращивать (но не слишком) объем правильных метрик, исходя из инцидентов, за которыми будем следить.
Поэтому я всегда за лаконичные автоматические отчеты, которые будут отвечать на два вопроса: есть ли проблема и где она возникла. Если проблема есть, нужно лезть в интерактивные системы анализа данных.
Разработка дашбордов – это одна из самых нелюбимых работ у тех, кто занимается анализом данных. Когда я обсуждал этот вопрос с Ди Джеем Патилом, отметив, что 50 % времени аналитического отдела занимает работа над отчетностью, он сказал, что у них в LinkedIn тоже периодически накапливался пул таких задач и приходилось их закрывать. И взгрустнул. Но дашборды очень нужны – они помогают контролировать общее здоровье вашей системы – вверенных вам серверов и сетей, если вы системный администратор, или всей компании, если вы генеральный директор.
Артефакты машинного обучения
Раньше компьютером можно было управлять только с помощью прямых команд или инструкций: поверни сюда, дай назад, сложи и т. д. Это обычное, так называемое детерминированное программирование – для нас понятен алгоритм в виде инструкций, мы его описали, и компьютер подчиняется ему. Машинное обучение предполагает совершенно другой подход к программированию – обучение на примерах. Здесь мы показываем системе что-то с помощью примеров, тем самым избавляем себя от самостоятельного написания инструкций, что бывает совсем не просто. Это становится работой по обучению алгоритма ML.
Конец ознакомительного фрагмента.