Российская Академия Наук
Шрифт:
При этом известно, что в мировом океане растворено постоянно около 180 кг полония, образующегося из распада природного урана – однако это количество равномерно распределено по объёму толщи воды и не представляет угрозы для живых существ.
Требуются более точные подсчёты, учитывающие скорости осаждения радиоактивного вещества из атмосферы, вымывания его в океан, распада, связывания и сродства с элементами в человеческом теле, а также способности людей мутировать и приспосабливаться к радиации, чтобы определить минимальное количество какого изотопа приведёт к вымиранию всех людей на Земле – или к длительной непригодности всей суши для сельского хозяйства и невозможности в связи с этим вернуться в доиндустриальную фазу развития или неизбежности деградации на ней. (Что может быть на два-три порядка меньше по уровню радиации.)
Для того чтобы радиоактивное вещество распространилось
Кроме того, короткоживущий изотоп можно пересидеть в бункере. Теоретически возможно создание автономных бункеров со сроком самообеспечения в десятки лет. Гарантированное вымирание можно получить, смешав долгоживущие и короткоживущие изотопы. Короткоживущие уничтожат большую часть биосферы, а долгоживущие сделают землю непригодной для жизни теми, кто пересидит заражение в бункере. (Подробнее о бункерах см. в соответствующей главе.)
Если некая страна, обладающая ядерными технологиями, окажется под угрозой внешнего завоевания, она может решиться создать такую бомбу. Особенно, если системы ПРО у противника не дадут шансов применить ракетное оружие для обороны. Тем более, что, возможно, для такой бомбы не потребуется много урана или плутония – только несколько килограммов на запал. Но потребуется очень много дейтерия. Стоимость 1 л тяжелой воды по доступным оценкам, ~1000$, то есть примерно 200 грамм тяжёлого водорода. Отсюда 5 миллиардов долларов – это 1000 тонн дейтерия, необходимого для такой бомбы. С учётом прочих расходов такая бомба должна стоить десятки миллиардов долларов. Однако если после создания такой бомбы на данную страну никто никогда не нападёт, то это дешевле, чем содержать вооружённые силы. Отсюда следует, что системы ПРО не повышают безопасность в мире, так как побуждают более слабые страны создавать кобальтовые стационарные бомбы в качестве последнего средства обороны. Или же, наоборот, разрабатывать ядерные чемоданчики, которые отдельные диверсанты могут пронести на вражескую территорию, или сосредотачиваться на разработке биологических и прочих альтернативных видах вооружения.
Радиационная авария
Полный взрыв современного реактора не угрожает выживанию людей, как это следует из последствий взрыва на Чернобыльской АЭС. С другой стороны, можно предположить возникновение в будущем неких гипотетических установок с гораздо большим выходом радиации в случае полного разрушения. Например, есть предположения, что в бланкете (оболочке камеры) термоядерного реакторы будут накапливаться значительно большие (в 100 раз) количества радиоактивных веществ с повышенным содержанием опасных изотопов вроде кобальта-60, которые в случае разрушения реактора высвободятся в атмосферу . Выход цепной реакции из-под контроля в некой установке так же мог бы значительно увеличить заражение.
Сверхбомба
После испытания «Царь-бомбы» в 1961 году на Новой Земле с выходом в 58 мегатонн, были разработки более мощных бомб с выходом в 200 и даже 1000 мегатонн, которые предполагалось транспортировать на судах к американским берегам и вызывать с их помощью цунами. Это значит, что, вероятно, появились технические возможности неограниченно наращивать взрывную силу бомбы. Наилучший массовый коэффициент бомб составляет порядка 6 мегатонн на тонну веса бомбы.
Важно также отметить, что Царь-бомба была испытана всего через 12 лет после взрыва первой атомной бомбы. Это говорит о том, что и другим державам может потребоваться относительно небольшой срок для перехода к огромным бомбам. Если сопоставить массовый коэффициент бомбы с массой ядерных реакторов порядка нескольких тысяч тонн, то становится понятно, что верхний предел сверхбомбы, которую сейчас можно сделать, составляет около ста гигатонн. Этого недостаточно для уничтожения всех людей силой взрыва, поскольку при падении астероидов выделялась энергия в тысячи раз больше. (См. главу о воздействии гигантских взрывов.) Взрыв сверхбомбы в каменноугольном пласте вызовет длительную ядерную зиму, сочетающуюся с сильным радиоактивным заражением. Несколько десятков сверхбомб, размещённых в разных местах Земли, могут покрыть своим поражающим ударом всю территорию планеты.
Есть также гипотетические предположения (Н. Бор), что взрыв мощной водородной бомбы в толще океана может вызвать горение дейтерия в морской
Накопление антиматерии
Станислав Лем как-то сказал, что он больше боится антиматерии, чем Интернета. Максимальная массовая эффективность ядерного заряда равна 6 мегатонн на тонну веса, что соответствует примерно 0,6 кг антиматерии. Но для удержания антиматерии тоже понадобятся специальные ловушки, которые должны много весить. Кроме того, очень трудно обезопасить антиматерию от случайного взрыва, тогда как обезопасить атомную бомбу легко. Наконец, нужно масса энергии на наработку антиматерии. В силу этого я полагаю, что нет смысла делать бомбы огромной мощности из антиматерии – да и мощности имеющихся атомных боеприпасов достаточно. Также нет смысла делать заряды из антиматерии малой мощности, так как с этими задачами справятся бомбы объёмного взрыва. Поэтому я полагаю маловероятным накопление антиматерии в военных целях. Только если будут сделаны некие новые принципиальные физические открытия, антиматерия будет представлять опасность. Антиматерия будет давать выход радиоактивных элементов за счёт столкновения атомов разных атомных масс. Опасно применение антиматерии в глубоком космосе, где теоретически можно собрать значительную массу антиматерии в виде некого метеорита (пользуясь наличием вакуума) и направить её незаметно на Землю.
Дешёвая бомба
Есть также опасность принципиального удешевления ядерного оружия, если удастся запускать самоподдерживающуюся термоядерную реакцию без инициирующего ядерного заряда – с помощью химической имплозии (цилиндрической), лазерного поджигания, магнитного сжатия, электрического разряда и небольших порций антиматерии, применённых в некой комбинации. Другой фактор – удешевление производства при использовании наработок нанотехнологий – то есть высокоточное и дешёвое производство с помощью микророботов. Третий фактор – обнаружение новых способов выделения урана из морской воды и его обогащения.
Есть также риск, что мы существенно недооцениваем простоту и дешевизну ядерного оружия, а, следовательно, и его количество в мире. Например, возможно, что реакторный плутоний можно приспособить для бомб пушечной схемы с выходом около 2 кт, пригодных актов ядерного терроризма . Любые открытия в области холодного ядерного синтеза, управляемого ядерного синтеза на токамаках, доставки гелия-3 из космоса, превращения элементов – упростят и удешевят производство ядерного оружия.
Равномерная атака на радиационные объекты
Ещё одним способом устроить конец света с помощью ядерного оружия является атака крылатыми ракетами (баллистические не имеют достаточной точности) всех ядерных реакторов и особенно хранилищ отработанного ядерного топлива на планете. Хотя вряд ли удастся возбудить цепную реакцию в нём, в воздух выделятся огромные количества радиации. «По оценке МАГАТЭ, к 2006 году из энергетических реакторов (а их в мире свыше 400) выгружено около 260 тыс. тонн ОЯТ, содержащих более 150 млрд. Кюри радиоактивности» и «К 2006 году страны мира накопили около 260 тыс. тонн ОЯТ, а к 2020 году его количество составит не менее 600 тыс. тонн» . То есть в XXI веке количество радиоактивных отходов будет расти как линейно, за счёт накопления, так и за счёт введения в строй новых реакторов.
Это даёт при равномерном распылении 150 млрд кюри – 300 кюри на квадратный километр земной поверхности. Это далеко за пределами норм отселения и запрета на сельское хозяйство по чернобыльской практике. При грубом пересчёте (эмпирическая формула – 1 кюри на квадратный метр даёт 10 рентген в час) это породит активность 3 милирентгена в час. Этого недостаточно для мгновенной смертности, так как составляет только примерно 2 рентгена в месяц, а максимально допустимая безопасная доза – 25 рентген – наберётся только за год. Однако такая местность надолго (в ОЯТ много долгоживущих элементов, в том числе плутония) непригодна для сельского хозяйства, поскольку в растительности и животных эти вещества накапливаются и при внутреннем потреблении дают в 10 раз более сильный удар по организму. Иначе говоря, выжившие люди никогда не смогут заниматься сельским хозяйством и будут обречены на постепенную деградацию от болезней. Всё же гарантированного вымирания здесь не б будет, так как люди – существа очень приспособляемые и живучие, если не вмешаются ещё какие-нибудь факторы. Крайне важно учитывать степень сродства радиоактивных веществ и человеческого организма. Например, после ядерных аварий принимают именно йодные таблетки, так как именно йод интенсивно улавливается и накапливается щитовидной железой.