Российская Академия Наук
Шрифт:
Итак, мы предполагаем, что вероятность глобальных катастроф можно оценить в лучшем случае с точностью до порядка, причём точность такой оценки будет плюс-минус порядок, и что такого уровня оценки достаточно, чтобы определить необходимость дальнейшего внимательного исследования и мониторинга той или иной проблемы. (Очевидно, что по мере того, как проблема будет приближаться к нам по времени и конкретизироваться, мы сможем получить более точные оценки в некоторых конкретных случаях, особенно в легко формализуемых задачах типа пролёта астероидов и последствий ядерной войны). Похожими примерами шкал риска являются Туринская
В силу сказанного кажется естественным предложить следующую вероятностную классификацию глобальных рисков в XXI веке (рассматривается вероятность на протяжении всего XXI века при условии, что никакие другие риски на неё не влияют):
1) Неизбежные события. Оценка их вероятности - порядка 100 % в течение всего века. Интервал: (10%; 100%) (Иначе говоря, даже то, что нам кажется неизбежным, может быть просто весьма вероятным.)
2) Весьма вероятные события – оценка вероятности порядка 10 %. (1%; 100%)
3) Вероятные события – оценка порядка 1 %. (0,1%; 10%)
4) Маловероятные события – оценка 0,1 %. (0,01%; 1%)
5) События с ничтожной вероятностью – оценка 0,01 % и меньше. (0%; 0,1%)
Пунктами 4) и 5) мы могли бы пренебречь в нашем анализе, поскольку их суммарный вклад меньше, чем уровень ошибок в оценке первых трёх. Однако на самом деле ими пренебрегать не стоит, так как возможна значительная ошибка в оценке рисков. Далее, важно количество событий с малой вероятностью. Например, если возможно несколько десятков разных сценариев с вероятностью (0,1%; 10%), то всё это множество имеет твёрдый интервал (1%; 100%). К категории 1 относится только тот факт, что в течение XXI века мир существенно изменится.
Должна ли сумма вероятностей отдельных глобальных рисков не превышать 100%? Предположим, что мы отправляем в поездку неисправный автомобиль. Вероятность того, что он потерпит аварию из-за того, что у него проколота шина, равна 90%. Однако, предположим, что у него, помимо этого, неисправны тормоза, и если бы шины были исправны, то вероятность аварии от неисправности тормозов тоже бы составляла 90%. Из этого примера видно, что вероятность каждого глобального риска, вычисляемая в предположении (очевидно, ложном), что нет других глобальных рисков, действующих в то же самое время, не может просто складываться с вероятностями других глобальных рисков.
В нашем примере шансы машины доехать до конца пути равны 1%, а шансы, что причиной аварии стал каждый из двух рисков – 49,5%. Предположим, однако, что первые полпути дорога такова, что авария может произойти только из-за неисправных шин, а вторую – только из-за неисправных тормозов. В этом случае до конца доедет тоже только 1% машин, но распределение вкладов каждого риска будет иным: 90% машин разобьётся на первом участке дороги из-за шин, и только 9% на втором из-за неисправных тормозов. Этот пример показывает, что вопрос о вероятности того или иного вида глобальной катастрофы некорректен, пока не указаны точные условия.
В наших рассуждениях мы будем широко пользоваться Принципом предосторожности, то есть мы будем предполагать, что события могут сложиться наихудшим реалистичным образом. При этом под реалистичными мы будем считать следующие сценарии: а) не противоречащие законам физики б) возможные при условии, что наука и техника будут развиваться с теми же параметрами ускорения, что и в настоящий момент.
В экономике применяется следующий метод предсказания – опрос ведущих экспертов о будущем некого параметра и вычисление среднего арифметического. Очевидно, это не позволяет узнать действительное значение параметра, но позволяет сформировать «best guess» – наилучшее предположение. Тот же метод можно применить, с определённой осторожностью, и для оценки вероятности глобальных катастроф. Допустим, в отношении глобального потепления из тысяч экспертов только один говорит, что она наверняка приведёт к полному вымиранию человечества. Тогда применение этой методики даст 0,1% шансы вымирания.
Высказанные соображения пригодятся нам при дальнейшем исследовании и классификации катастроф.
Численные оценки вероятности глобальной катастрофы, даваемые различными авторами
Далее я привожу известные мне оценки ведущих экспертов в этой области . Дж. Лесли, 1996 «Конец света»: 30% в ближайшие 500 лет с учётом действие теоремы о Конце света (Doomsday argument – см. главу о нём в конце книги), без него – 5%.
Бостром, 2001, «Анализ сценариев вымирания»: «Мое субъективное мнение состоит в том, что будет ошибочно полагать эту вероятность меньшей, чем 25%, и наивысшая оценка может быть значительно больше… В целом, наибольшие риски существованию на отрезке времени в два столетия или меньше кажутся связанными с активностью продвинутой технологической цивилизации».
Сэр Мартин Рис, 2003 «Наш последний час»: 50% в XXI веке. (Курцвейль приходит к аналогичным выводам.)
Может показаться, что эти данные не сильно расходятся друг с другом, так как во всех случаях фигурируют десятки процентов. Однако промежуток времени, на который даётся это предсказание, каждый раз сокращается (пятьсот лет – двести лет – сто лет), в результате чего погодовая плотность вероятности растёт. А именно: 1996 – 0,06% (и даже 0,012% без учёта DA), 2001 – 0,125%, 2003 – 0,5%.
Иначе говоря, за десять лет ожидаемая оценка плотности вероятности глобальных катастроф, по мнению ведущих экспертов в этой области, возросла почти в 10 раз. Разумеется, можно сказать, что 3 эксперта недостаточно для статистики, и что они могли взаимно влиять друг на друга, однако тенденция неприятная. Если бы мы имели право экстраполировать эту тенденцию, то в 10-е годы мы можем ожидать оценок погодовой вероятности вымирания в 5 процентов, а в 20-е – в 50 процентов, что означало бы неизбежность вымирания до 2030 года. Несмотря на всю свою спекулятивность, эта оценка совпадает с другими оценками, полученными далее разными независимыми способами.