Русские инженеры
Шрифт:
В его присутствии никто не мог сделать ни одной ошибки в математическом построении. Он все знал и все помнил.
Характерный случай произошел однажды в Московском математическом обществе на докладе Жуковского. Жуковский, чтобы не тратить времени на писание чисел и формул, имел обыкновение показывать на экране вместо доски заранее заготовленные формулы и вычисления. Так было и на этот раз.
Когда на экране появился какой-то новый расчет, Чаплыгин заметил угрюмо:
— Николай Егорович, у вас коэффициент не тот!
— Как не тот? — всполошился Николай Егорович, подбегая к экрану. — Разве не тот?.. Да,
Математика для Чаплыгина была искусством строгих логических решений. Оставаясь полным хозяином в своей области, он не мешался в чужие. Он прокладывал путь практике — задачу приложения полученных результатов он предоставлял другим.
Жуковского нередко можно было увидеть в лаборатории за каким-нибудь опытом. Чаплыгин пытался раз, еще студентом, провести какой-то физический опыт, но сделал все так плохо, что потом уже никогда не брался экспериментировать.
Жуковский бесконечно любил живую природу. Чаплыгин был к ней равнодушен. Если он приезжал в дом отдыха, то целыми днями просиживал за шахматами, и часто даже один, если не было партнера.
Бомбардировщик конструкции Илюшина.
Чаплыгин был более всего удивителен для окружающих тем, что совмещал в своей личности философа и хозяйственника, мыслителя и администратора. С одинаковой глубиной и зоркостью он постигал и сложные закономерности вселенной и организацию экспериментальных работ в аэродинамической лаборатории его имени.
Нет почти ни одной области инженерного дела, в которой бы сегодня не применялся математический аппарат, но трудность теоретических решений заключается не в развитии математической теории и тем более не в счетной работе, которую в наши дни выполняют и автоматы. Основная трудность заключается в выборе предпосылок для математической обработки, в установлении функциональных зависимостей между ними и, наконец, в истолковании полученных математическим путем результатов.
Математик прежде всего находит общую форму изучаемых явлений, пренебрегая ненужными для исследования сторонами, а затем производит логический анализ, тщательное и глубокое исследование этой формы. Скажем, исследуя движение планет, математик пренебрегает размерами небесных тел, заменяя их «материальными точками».
Найдя такую общую форму изучаемого явления, математик затем переходит к установлению функциональных связей между переменными величинами, например связи между колебаниями массивной системы железнодорожного моста и весом движущегося по нему с некоторой скоростью поезда.
Вот в установлении всякого рода функциональных связей и был величайшим мастером Сергей Алексеевич Чаплыгин. Он умел устанавливать эти связи между любыми величинами с проникновением гения, кажется никогда не ошибаясь.
Великим мастером он был и в истолковании полученных математическим путем результатов.
Область применения математического анализа в физических науках принципиально не ограничена. При математическом анализе физических явлений исследователь,
Но Чаплыгину казалось, что истинная природа может быть описана только при помощи математических построений. Если воображаемая природа Чаплыгина очень близко подходила к реальной природе, его открытия и заключения приобретали огромное значение.
Если реальная природа отступала в своем поведении от законов, математически устанавливаемых Чаплыгиным, он считал свои построения неправильными, но оставался в уверенности, что мир постигать может только математика.
Чаще всего, однако, реальная природа вела себя именно так, как по математическому построению «сверхинженера» она должна была действовать.
— Природа любит простоту, — говорил он. — Если у нее верно спрашиваешь, она ответит просто.
И если в результате его построения получалась громоздкая, сложная формула, он браковал работу и начинал ее сызнова.
Сергей Алексеевич мог «полностью понимать любое, выраженное в символической форме сложное соотношение или закон, как соотношение между абстрактными величинами». Когда он, переходя от одного математического соотношения к другому, писал, как обычно: «Отсюда ясно, что…», даже изощренные математики не всегда могли восстановить тот логический путь, который представлялся ему не требующим пояснений.
Чаплыгин сидел на научных докладах, как бы дремля, с полузакрытыми глазами, но в ту минуту, когда вы готовы были бы поклясться, что ом давно уже потерял нить рассуждений докладчика, ученый вдруг приоткрывал глаза и говорил:
— Иван Николаевич, а почему у вас тут плюс?
— Как почему? — отвечал докладчик, готовый пуститься в длинные рассуждения, чуть ли не с самого начала. — Изволите видеть, я взял…
— Да нет, вы проверьте, Иван Николаевич, — прерывал его Чаплыгин, — тут не плюс!
И неизменно оказывалось, что Чаплыгин, контролировавший речь докладчика, замечал малейшую ошибку в сложнейшем выражении, для которого едва хватало большой доски аудитории.
Чаплыгин начал с разработки математических идей своего учителя, высказанных им попутно в курсе гидродинамики, и до конца жизни оставался «инженером высшего ранга», «лучом света для практиков», но не инженером-конструктором, которым он удивлялся не менее, чем удивлялись они ему.
Ученый теоретик и мыслитель, он обладал в то же время незаменимым даром каждого организатора угадывать людей.