Секретные инструкции ЦРУ и КГБ по сбору фактов, конспирации и дезинформации
Шрифт:
Нагретое твердое тело излучает в очень широком интервале длин волн. При низких температурах (ниже 800 К) излучение нагретого твердого тела почти целиком расположено в инфракрасной области и такое тело кажется темным. При повышении температуры доля излучения в видимой области увеличивается и тело вначале кажется темно-красным, затем красным, желтым и, наконец, при высоких температурах (выше 5000 К) — белым; при этом возрастает как полная энергия излучения, так и энергия ИИ.
Оптические свойства веществ (прозрачность, коэффициент отражения, коэффициент преломления) в инфракрасной области спектра, как правило, значительно отличаются от оптических свойств в видимой и ультрафиолетовой областях. Многие вещества, прозрачные в видимой области, оказываются непрозрачными в некоторых областях ИИ,
Наличие в атмосфере взвешенных частиц — дыма, пыли, мелких капель воды (дымка, туман) — приводит к дополнительному ослаблению ИИ в результате рассеяния его на этих частицах, причем величина рассеяния зависит от соотношения размеров частиц и длины волны ИИ. При малых размерах частиц (воздушная дымка) ИИ рассеивается меньше, чем видимое излучение (что используется в инфракрасной фотографии), а при больших размерах капель (густой туман) ИИ рассеивается так же сильно, как и видимое.
Мощным источником ИИ является Солнце, около 50 % излучения которого лежит в инфракрасной области. Значительная доля (от 70 до 80 %) энергии излучения ламп накаливания с вольфрамовой нитью приходится на ИИ. При фотографировании в темноте и в некоторых приборах ночного наблюдения лампы для подсветки снабжаются инфракрасным светофильтром, который пропускает только ИИ. Мощным источником ИИ является угольная электрическая дуга с температурой ~ 3900 К, излучение которой близко к излучению так называемого «черного тела», а также различные газоразрядные лампы (импульсные и непрерывного горения).
К инфракрасной аппаратуре и приборам (инфракрасной технике) относятся: приборы для обнаружения и измерения инфракрасного излучения, приборы для наблюдения и фотографирования в темноте, приборы для дистанционного измерения температуры нагретых тел по их тепловому излучению, приборы для скрытой сигнализации, земной и космической связи, инфракрасные прицелы, дальномеры, приборы для обнаружения наземных, морских и воздушных целей по их собственному тепловому инфракрасному излучению (теплопеленгаторы, приборы ночного видения), устройства для самонаведения на цель снарядов и ракет.
Различают активные и пассивные ИК приборы. Активные основаны на принципе получения информации об объектах по отраженному от них ИК излучению искусственных ИК источников (прожекторов, лазеров ИК диапазона и т. п.), пассивные — по ИК излучению естественных источников (Луна, звезды) или собственно объектов (целей). В частности, прицелы ночного видения (ПНВ) служат для получения в темное время суток видимого изображения объектов (целей) и местности. Основные элементы ПНВ — объектив, электронно-оптический преобразователь (ЭОП) и окуляр.
ЭОП — это вакуумный фотоэлектронный прибор для преобразования невидимого глазом изображения объекта (в инфракрасных, ультрафиолетовых и рентгеновских лучах) в видимое либо для увеличения (усиления) яркости видимого
Различают ПНВ пассивные, активные, пассивно-активные с ИК прожектером или с импульсной лазерной подсветкой; по назначению — приборы наблюдения и разведки, прицелы, приборы вождения машин. ПНВ имеют неперископическую (для стрелкового оружия) или перископическую конструкцию (для самодвижущейся техники).
В шпионских целях широко применяется инфракрасная фотография (ИФ) — получение фотоснимков в ИК-излучении. Фотоснимки в ИК-излучении можно получать различными методами. Наиболее прост метод непосредственного фотографирования на фотопластинки и пленки, чувствительные к ИК-излучению (инфрапленки или пластинки). При этом на объектив фотоаппарата устанавливают светофильтр, пропускающий ИК-излучение и непрозрачный для видимого света. Длинноволновая граница чувствительности современных инфрафотоматериалов у = 1, 2 мкм.
Чувствительность инфрапленок и пластинок относительно мала, поэтому для ИФ в условиях малой освещенности применяют приборы, состоящие из ЭОП и обычного фотоаппарата. ЭОП, установленный перед объективом фотоаппарата, преобразует невидимое инфракрасное изображение в видимое и одновременно усиливает его яркость. Такие приборы позволяют получать снимки на обычной фотопленке в полной темноте при небольшой мощности облучающего источника ИК-излучения. Длинноволновая граница прибора определяется фотокатодом преобразователя и не превышает у =1,2 мкм.
С помощью специальных приборов можно получать ИФ в области у > 1, 2 мкм. Один из них — инфракрасный видикон — представляет собой телевизионную систему, у которой экран передающей трубки изготовлен из фотопроводящих полупроводниковых материалов, изменяющих свою электропроводность под действием ИК-излучения. Получаемое на экране приемной трубки видимое телевизионное изображение фотографируется обычным фотоаппаратом.
ИФ позволяет получать дополнительную (по сравнению с фотографией в видимом свете или при рассматривании объекта глазом) информацию об объекте. Так как ИК-излучение рассеивается при прохождении через дымку и туман меньше, чем видимое излучение, ИФ позволяет получать четкие снимки предметов, удаленных на большие расстояния.
Благодаря различию коэффициентов отражения и пропускания в видимом и инфракрасном диапазонах на ИФ можно увидеть детали, невидимые глазом и на обычной фотографии.
Существуют приборы, фиксирующие тепловое ИК-излучение объекта, в разных точках которого температура различна. Интенсивность ИК-излучения в каждой точке изображения регистрируется приемником и преобразуется в световой сигнал, который фиксируется на фотопленке. Изображение, получаемое в этом случае, не является ИФ в обычном смысле, так как оно дает лишь картину распределения температуры по поверхности объекта.
Тепловидение
Противник помимо прочих способов маскировки может применять и инфракрасную, т. е. скрытие объектов (целей) от обнаружения средствами инфракрасного видения и противодействие возможному их поражению ракетами с инфракрасными головками самонаведения. Ее осуществляют использованием маскирующих свойств местности, экранированием нагревающихся поверхностей боевых (специальных) машин и других объектов непрозрачными для инфракрасного излучения преградами, применением ложных инфракрасных целей и т. п. Тем не менее подобные цели можно обнаружить по их тепловым лучам — тепловому излучению, частота которого лежит за границами чувствительности (не обладающих нужной способностью восприятия тепловой контрастности) приборов инфракрасного видения, не воспринимающих его.