Схемотехника аналоговых электронных устройств
Шрифт:
где UR — граница области управляемого сопротивления на выходных статических характеристиках транзистора (рисунок 2.30),
UR ≈ (1…2) В;
Iс0 ≥ Uвых/R≈,
где R≈= Rс∥Rн — сопротивление нагрузки каскада по переменному току;
где Uотс —
С помощью резистора Rи, помимо задания необходимого напряжения смещения, в каскад вводится ООС, способствующая термостабилизации (у ПТ как и у БТ наблюдается сильная температурная зависимость параметров), на частотах сигнала эта ОС устраняется путем включения Cи.
Графически проиллюстрировать работу каскада с ОИ можно, используя проходные и выходные статические характеристики ПТ, путем построения его динамических характеристик. Построение во многом аналогично каскаду с ОЭ и отдельно не рассматривается.
Нетрудно показать, что каскад с ОИ, как и каскад с ОЭ, инвертирует входной сигнал.
На рисунке 2.31 а,б,в приведены, соответственно, малосигнальные схемы для областей СЧ,НЧ, и ВЧ.
Рисунок 2.31. Схемы каскада с ОИ для СЧ, ВЧ и НЧ
Для расчета параметров усилительного каскада по переменному току удобно использовать методику, описанную в разделе 2.3, а ПТ представить моделью, предложенной в разделе 2.4.2.
В результате расчета в области СЧ получим:
K0 = S0Rэкв,
где Rэкв= Rс∥Rн;
gвх ≈ 1/Rз,
gвых ≈ gс = 1/Rз.
Эти соотношения получены в предположении, что низкочастотное значение внутренней проводимости транзистора g22э много меньше gс и gн. Это условие (если не будет оговорено особо) будет действовать и при дальнейшем анализе усилительных каскадов на ПТ.
В области ВЧ получим:
где τв — постоянная времени каскада в области ВЧ, τв≈CнRэкв;
где Cвхдин = Cзи + Cзс(1 + K0);
Выражения
В области НЧ получим:
Kн = K0/(1 + 1/jωτн),
где τн — постоянная времени разделительной цепи в области НЧ. далее все так же, как для каскада с ОЭ.
2.10. Термостабилизация режима каскада на ПТ
Различают, по крайней мере, шесть типов ПТ, показанные на рисунке 2.32.
Рисунок 2.32. Основные типы ПТ
Проходные характеристики n-канальных ПТ в режиме обогащения, смешанном и обеднения приведены, соответственно на рисунке 2.33 а,б,в, для p-канальных ПТ они будут отличаться противоположной полярностью питающих напряжений.
Рисунок 2.33. Проходные характеристики ПТ
С помощью рассмотренной схемы автосмещения (рисунок 2.29) возможно обеспечение требуемого режима по постоянному току для ПТ, имеющих проходную характеристику, изображенную на рисунке 2.33а, и — (при отрицательном смещении) — на рисунке 2.33б. Более универсальной схемой питания ПТ является схема с делителем в цепи затвора (рисунок 2.34), способная обеспечить любую полярность напряжения смещения Uзи0.
Рисунок 2.34. Схема питания ПТ с делителем в цепи затвора
В [1] приведен ряд полезных практических соотношений:
где соответствующие токи показаны на рисунке 2.33, а Sси — крутизна при токе стока равном Iси.
В ПТ температурная нестабильность тока стока обусловлена следующими факторами (при росте температуры):
◆ увеличением тока стока за счет теплового смещения проходных характеристик (как и в БТ) при малых значениях тока покоя стока Iс0;
◆ уменьшением тока стока за счет удельного сопротивления канала в широком диапазоне изменения тока покоя стока Iс0.
Следовательно, у некоторых типов ПТ возможно существование термостабильной точки покоя (рисунок 2.35).
Рисунок 2.35. Температурная зависимость тока стока
Координаты термостабильной точки и соответствующую им крутизну можно приближенно оценить по следующим соотношениям [1]: