Схемотехника аналоговых электронных устройств
Шрифт:
Из этих формул видно, что данная схема имеет лучшую термостабильность (ST1 и ST2 меньше единицы), чем схема с фиксированным током базы.
В схеме коллекторной термостабилизации ООС влияет и на другие характеристики каскада, что должно быть учтено. Механизм влияния данной ООС на характеристики каскада будет рассмотрен далее. Схемные решения, позволяющие устранить ООС на частотах сигнала, приведены на рисунках 2.19б,в.
В
Рисунок 2.20. Каскад с эмиттерной термостабилизацией
Эффект термостабилизации в этой схеме достигается:
◆ фиксацией потенциала Uб выбором тока базового делителя Iд>>Iб0, Uб≈const.
◆ введением по постоянному току ООС путем включения резистора Rэ. На частотах сигнала эта ООС устраняется шунтированием резистора Rэ емкостью Cэ.
Напряжение Uбэ0 определяется как:
Uбэ0 = Uб – URэ.
Механизм действия ООС можно изобразить следующей диаграммой:
T⇑⇒I⇑к0⇒U⇓Rэ⇒U⇓бэ0⇒I⇓б0⇒I⇓к0,
↑←←←←петля ООС ←←←←↓
где символами ⇑ и ⇓ показано, соответственно, увеличение и уменьшение соответствующего параметра. Эскизный расчет эмиттерной схемы термостабилизации маломощного каскада можно проводить в следующей последовательности:
◆ Зададимся током делителя, образованного резисторами Rб1 и Rб2:
Iд = (3…10)Iб0;
◆ выбираем URэ = (0,1…0,2)Eк ≈ (1…5) В, и определяем номинал Rэ:
◆ определяем потенциал Uб:
Uб = URэ + Uбэ0;
◆ рассчитываем номиналы резисторов базового делителя:
Rб1 = Uб/Iд,
где Eк=Uк0+URэ+Iк0Rк, Rк определяется
Коэффициенты термостабилизации для этой схемы:
ST1 ≈ 1/(1 + S0·Rэ),
Здесь R12 — параллельное соединение резисторов Rб1 и Rб1.
Для каскадов повышенной мощности следует учитывать требования экономичности при выборе Iд и URэ.
Анализ полученных выражений показывает, что для улучшения термостабильности каскада следует увеличивать номинал Rэ и уменьшать R12.
Для целей термостабилизации каскада иногда используют термокомпенсацию. Принципиальная схема каскада с термокомпенсацией приведена на рисунке 2.21.
Рисунок 2.21. Каскад с термокомпенсацией
Здесь в цепь базы транзистора включен прямосмещенный диод D, температурный коэффициент стабилизации напряжения (ТКН) которого равен ТКН эмиттерного перехода БТ. При изменении температуры окружающей среды напряжение Uбэ0 и напряжение на диоде Δφ0 будет меняться одинаково, в результате чего ток покоя базы Iб0 останется постоянным. Применение этого метода особенно эффективно в каскадах на кремниевых транзисторах, где основную нестабильность тока коллектора порождает ΔUбТ (из-за относительной малости ΔIкбо). Наилучшая реализация этого метода термокомпенсации достигается в ИМС, где оба перехода естественным образом локализуются в пределах одного кристалла и имеют совершенно одинаковые параметры. Возможно применение других термокомпенсирующих элементов и цепей, например, использующих сочетания БТ и ПТ. Большой класс цепей, питающих БТ, составляют схемы с двумя источниками питания, пример одной из них приведен на рисунке 2.22.
Рисунок 2.22. Каскад с двуполярным питанием
По сути, это схема эмиттерной термостабилизации, у которой "жестко" зафиксирован потенциал Uб,
Следует отметить возможность применения данных схем термостабилизации при любой схеме использования БТ в любой комбинации.