Чтение онлайн

на главную - закладки

Жанры

Сигнал и шум. Почему одни прогнозы сбываются, а другие - нет

Сильвер Нейт

Шрифт:

Иными словами, планка, установленная в конкурентной борьбе, казалась достаточно низкой. Любой человек мог произвести впечатление гения, занявшись самыми простыми базовыми исследованиями того, что действительно обладает предсказуемостной способностью в политической кампании. Поэтому я начал вести блог на сайте Daily Kos, рассказывая о детальном и управляемом данными анализе таких вопросов, как опросы или данные по сбору средств кандидатами. Я выяснил, какие опросы показывали в прошлом самые точные результаты и насколько победа в одном штате – к примеру, Айове – могла привести к изменению расстановки сил в другом. Мои статьи быстро стали популярными, хотя чаще всего комментарии читателей сайтов, подобных Daily Kos, носят качественный (и довольно предвзятый) характер. В марте 2008 г. я начал выставлять аналитические данные на собственном сайте (FiveThirtyEight), где размещались прогнозы, касающиеся различных выборных кампаний.

Поначалу

модель прогнозирования FiveThirtyEight была довольно простой – по сути, она брала среднее значение из результатов всех опросов и рассчитывала вес каждого опроса в зависимости от его соответствия последующим событиям. Затем она стала более изощренной, однако при этом всегда соблюдались три довольно широких принципа (которые можно назвать «лисьими»).

Принцип 1. Учитывайте вероятностность события

Почти все публикуемые мной прогнозы, как в политике, так и в других областях, являются вероятностными.

Вместо того чтобы «выплеснуть» одну цифру и утверждать, что я точно знаю, что произойдет далее, я показываю диапазон возможных результатов. Например, 2 ноября 2010 г. мой прогноз о возможном количестве мест республиканцев в Конгрессе США выглядел так, как показано на рис. 2.1.

Предполагалось, что наиболее вероятное количество мест, которое наберут республиканцы, находилось в диапазоне, перекрывающем почти половину всех возможных вариантов, – от 45 до 65 (в реальности они получили 63 места). Однако также имелась возможность выигрыша республиканцами 70 или 80 мест – но уж точно не предсказанной Диком Моррисом сотни. И существовала вероятность того, что демократы удержат достаточно мест для сохранения контроля над Конгрессом.

Рис. 2.1. Прогноз количества мест республиканцев в Конгрессе США на 2 ноября 2010 г. от FiveThirtyEight

Широкий разброс исходов выборов отражал неопределенность, присущую реальному миру. Прогноз был создан на основе индивидуальных прогнозов для каждого из 435 мест в Конгрессе – и в большинстве кампаний разрыв межу конкурировавшими кандидатами был минимальным. В результате судьба 77 мест в Конгрессе определялась разрывом голосов менее чем в 10 % {171} . Если бы демократы обогнали собственные прогнозы в самых конкурентных регионах всего на пару процентов, то смогли бы легко удержать за собой Конгресс. Если бы то же самое смогли сделать республиканцы, то превратили бы свою победу в невероятный триумф. Небольшие колебания политических течений могли бы привести к существенно иному результату; поэтому было бы глупо сводить описание происходящего к точной цифре.

171

«Election Results: House Big Board», New York Times, November 2, 2010. http://elections.nytimes.com/2010/results/house/big-board.

Этот вероятностный принцип также сохраняется в случаях, когда я прогнозирую, чем завершатся отдельные кампании. Например, насколько велика вероятность выигрыша кандидата, если он, по итогам опросов, опережает конкурента на пять пунктов? Именно такие вопросы и призваны решать модели типа FiveThirtyEight.

Ответ на подобный вопрос в значительной степени зависит от типа гонки, в которую вовлечен кандидат. Чем ниже уровень выборов, тем более волатильными становятся результаты: данные опросов на предвыборной гонке в Конгресс менее точны, чем данные опросов при выборах в Сенат, а те, в свою очередь, менее точны, чем опросы перед выборами президента. Также считается, что, в целом опросы в ходе предварительных партийных выборов (праймериз) значительно менее точны, чем опросы в ходе общих выборов. Во время праймериз Демократической партии в 2008 г. средняя величина ошибки в данных опроса составляла около восьми пунктов – значительно больше, чем подразумевается при оценке ее погрешности. Проблема опросов в ходе республиканских праймериз 2012 г. была еще масштабнее {172} . Фактически во многих важных штатах – включая Айову, Южную Каролину, Флориду, Мичиган, Вашингтон, Колорадо, Огайо, Алабаму и Миссисипи – кандидат, лидировавший в ходе опросов за неделю до выборов, проигрывал гонку.

172

Nate Silver, «A Warning on the Accuracy of Primary Polls», FiveThirtyEight, New York Times, March 1, 2012.vethirtyeight.blogs.nytimes.com/2012/03/01/a-warning-on-the-accuracy-of-primary-polls/.

Однако

опросы становятся более точными по мере приближения дня выборов. В табл. 2.3 представлены некоторые результаты, полученные с использованием упрощенной версии модели прогнозирования FiveThirtyEight для выборов в Сенат, использовавшей данные за период с 1998 по 2008 г. В модели рассчитывалась вероятность выигрыша кандидата на основе значения средней величины его опережения в ходе опросов. Допустим, кандидат в Сенат, имевший пятипроцентное опережение, выигрывал гонку в 95 % случаев – это было почти гарантировано, хотя пресса часто называла предвыборную гонку «непредсказуемой». Напротив, в случае преимущества в пять пунктов за год до выборов, шансы на победу составляют лишь 59 % – чуть лучше, чем при гадании с помощью подбрасывания монетки.

В подобных условиях ценность моделей типа FiveThirtyEight становится очевидной. Нет никаких проблем с тем, чтобы посмотреть на цифры, увидеть, что некий кандидат ведет по данным некоторых или всех опросов, и понять, что он является фаворитом (за некоторыми исключениями это предположение будет правильным). Гораздо сложнее понять, в какой мере он выступает фаворитом. Наши мозги, приученные находить закономерности, всегда пытаются найти в данных сигнал, хотя, на самом деле, вместо этого нам следует оценивать степень шума.

Таблица 2.3. Вероятность победы кандидата на выборах в Сенат, основанная на среднем показателе опережения в ходе опросов

Я привык именно к такому стилю мышления, а предпосылкой для него является опыт, приобретенный, когда я имел дело с двумя дисциплинами – спортом и покером, в которых вы, так или иначе, сталкиваетесь со всеми вариантами развития событий. Сыграв достаточное количество партий в покер, вы получаете некоторое количество комбинаций ройял-флэш. Стоит вам сыграть еще, и вы окажетесь в ситуации, когда у вас на руках будет фулл-хаус, а ройял-флэш придет вашему сопернику. В спорте, особенно бейсболе, также возникают события с низкой вероятностью. Так, команда Boston Red Sox не смогла выйти в плей-офф в 2011 г., несмотря на то что в какой-то момент ее шансы на это составляли 99,7 % {173} , – хотя лично я не стал бы спорить с человеком, считающим, что в случае Red Sox или Chicago Cubs обычные законы вероятности просто не работают.

173

Nate Silver, «Bill Buckner Strikes Again», FiveThirtyEight, New York Times; September 29, 2011. http://fivethirtyeight.blogs.nytimes.com/2011/09/29/bill-buckner-strikes-again/.

Такое отсутствие определенности часто расстраивает политиков и политических обозревателей. В 2010 г. один конгрессмен-демократ позвонил мне за несколько недель до выборов. Он представлял довольно благополучный для демократической партии район на западном побережье.

Тем не менее, принимая во внимание, насколько хорошо шли в том году дела у республиканцев, он беспокоился, что может потерять свое место. Он хотел знать, насколько велика доля неопределенности в нашем прогнозе. При округлении наши цифры говорили ему о том, что вероятность его победы составляет 100 %… Однако что значили эти 100 % на самом деле – 99 % или 99,99 %, или же 99,9999 %? В первом случае, когда шансы проигрыша оценивались как 1 к 100 000, он был готов пожертвовать собранными на его кампанию средствами и передать их другим кандидатам, баллотировавшимся в более уязвимых районах. Однако он не был готов так поступить, если шансы на его проигрыш составляли 1 к 100.

Представители политических партий могут неправильно интерпретировать роль неопределенности в прогнозе; они относятся к ней как к своего рода страховке или возможному оправданию в случае, если предсказание оказывается неверным. Но дело заключается совсем в другом. Если вы прогнозируете, что некий конгрессмен будет выигрывать в 90 % случаев, то это также означает, что ему будет суждено проиграть в 10 % случаев {174} . Отличительный признак хорошего прогноза заключается в том, что каждая из этих вероятностей может реализоваться в долгосрочной перспективе.

174

В противном случае вам следовало бы дать конгрессмену 100 %-ный шанс на выигрыш.

Поделиться:
Популярные книги

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5

Казачий князь

Трофимов Ерофей
5. Шатун
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Казачий князь

Страж Кодекса. Книга VII

Романов Илья Николаевич
7. КО: Страж Кодекса
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Страж Кодекса. Книга VII

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Барон переписывает правила

Ренгач Евгений
10. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон переписывает правила

Гримуар темного лорда III

Грехов Тимофей
3. Гримуар темного лорда
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Гримуар темного лорда III

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Ложная девятка

Риддер Аристарх
1. 4-4-2
Фантастика:
попаданцы
альтернативная история
фэнтези
5.00
рейтинг книги
Ложная девятка

Око василиска

Кас Маркус
2. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Око василиска

Гридень 2. Поиск пути

Гуров Валерий Александрович
2. Гридень
Детективы:
исторические детективы
5.00
рейтинг книги
Гридень 2. Поиск пути

Ложная девятка, часть третья

Риддер Аристарх
3. 4-4-2
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ложная девятка, часть третья

Три `Д` для миллиардера. Свадебный салон

Тоцка Тала
Любовные романы:
современные любовные романы
короткие любовные романы
7.14
рейтинг книги
Три `Д` для миллиардера. Свадебный салон

Законник Российской Империи. Том 2

Ткачев Андрей Юрьевич
2. Словом и делом
Фантастика:
городское фэнтези
альтернативная история
аниме
дорама
6.40
рейтинг книги
Законник Российской Империи. Том 2